923 resultados para PLANTATION FORESTS
Resumo:
This thesis articulates a methodology that can be applied to the analysis and design of underlying organisational structures and processes that will consistently and effectively address ‘wicked problems’ (the most difficult class of problems that we can conceptualise: problems which consist of ‘clusters’ of problems; problems within these clusters cannot be solved in isolation from one another, and include sociopolitical and moral-spiritual issues (Rittel and Webber 1973)) in forestry. This transdisciplinary methodology has been developed from the perspective of institutional economics synthesised with perspectives from ecological economics and system dynamics. The institutionalist policymaking framework provides an approach for the explicit development of holistic policy. An illustrative application of this framework has been applied to the wicked problem of forestry in southern Tasmania as an example of the applicability of the approach in the Australian context. To date all attempts to seek solutions to that prevailing wicked problem set have relied on non-reflexive, partial and highly reductionist thinking. A formal assessment of prevailing governance and process arrangements applying to that particular forestry industry has been undertaken using the social fabric matrix. This methodology lies at the heart of the institutionalist policymaking framework, and allows for the systematic exploration of elaborately complex causal links and relationships, such as are present in southern Tasmania. Some possible attributes of an alternative approach to forest management that sustains ecological, social and economic values of forests have been articulated as indicative of the alternative policy and management outcomes that real-world application of this transdisciplinary, discursive and reflexive framework may crystallise. Substantive and lasting solutions to wicked problems need to be formed endogenously, that is, from within the system. The institutionalist policymaking framework is a vehicle through which this endogenous creation of solutions to wicked problems may be realised.
Resumo:
This study examined the potential for Fe mobilization and greenhouse gas (GHG, e.g. CO2, and CH4) evolution in SEQ soils associated with a range of plantation forestry practices and water-logged conditions. Intact, 30-cm-deep soil cores collected from representative sites were saturated and incubated for 35 days in the laboratory, with leachate and headspace gas samples periodically collected. Minimal Fe dissolution was observed in well-drained sand soils associated with mature, first-rotation Pinus and organic Fe complexation, whereas progressive Fe dissolution occurred over 14 days in clear-felled and replanted Pinus soils with low organic matter and non-crystalline Fe fractions. Both CO2 and CH4 effluxes were relatively lower in clear-felled and replanted soils compared with mature, first-rotation Pinus soils, despite the lack of statistically significant variations in total GHG effluxes associated with different forestry practices. Fe dissolution and GHG evolution in low-lying, water-logged soils adjacent to riparian and estuarine, native-vegetation buffer zones were impacted by mineral and physical soil properties. Highest levels of dissolved Fe and GHG effluxes resulted from saturation of riparian loam soils with high Fe and clay content, as well as abundant organic material and Fe-metabolizing bacteria. Results indicate Pinus forestry practices such as clear-felling and replanting may elevate Fe mobilization while decreasing CO2 and CH4 emissions from well-drained, SEQ plantation soils upon heavy flooding. Prolonged water-logging accelerates bacterially mediated Fe cycling in low-lying, clay-rich soils, leading to substantial Fe dissolution, organic matter mineralization, and CH4 production in riparian native-vegetation buffer zones.
Resumo:
Our Counselling and ISS team organised, in early December, 2011 a celebration of two years of art workshops and activities provided for our University post-graduate research students. The workshops had a number of benefits. They were to raise awareness of biodiversity and forests as well as providing a forum for engaging with others and an opportunity to belong to a semi-regular group. The 2010 theme had been the United Nations International Year of Biodiversity and the 2011 theme had been the United Nations International Year of Forests.
Resumo:
Our Counselling and ISS team organised, in early December, 2011 a celebration of two years of art workshops and activities provided for our University post-graduate research students. The workshops had a number of benefits. They were to raise awareness of biodiversity and forests as well as providing a forum for engaging with others and an opportunity to belong to a semi-regular group. The 2010 theme had been the United Nations International Year of Biodiversity and the 2011 theme had been the United Nations International Year of Forests.
Resumo:
Through a forest inventory in parts of the Amudarya river delta, Central Asia, we assessed the impact of ongoing forest degradation on the emissions of greenhouse gases (GHG) from soils. Interpretation of aerial photographs from 2001, combined with data on forest inventory in 1990 and field survey in 2003 provided comprehensive information about the extent and changes of the natural tugai riparian forests and tree plantations in the delta. The findings show an average annual deforestation rate of almost 1.3% and an even higher rate of land use change from tugai forests to land with only sparse tree cover. These annual rates of deforestation and forest degradation are higher than the global annual forest loss. By 2003, the tugai forest area had drastically decreased to about 60% compared to an inventory in 1990. Significant differences in soil GHG emissions between forest and agricultural land use underscore the impact of the ongoing land use change on the emission of soil-borne GHGs. The conversion of tugai forests into irrigated croplands will release 2.5 t CO2 equivalents per hectare per year due to elevated emissions of N2O and CH4. This demonstrates that the ongoing transformation of tugai forests into agricultural land-use systems did not only lead to a loss of biodiversity and of a unique ecosystem, but substantially impacts the biosphere-atmosphere exchange of GHG and soil C and N turnover processes.
Resumo:
Forest regulation is never far from the headlines. The recent COP 18 negotiations held in Doha towards the end of 2012 were criticized by observers for slowing the development of the ‘REDD+’ initiative and for marking the end of ‘Forest Day’, whilst in the last month controversy has arisen following reports that the World Bank’s investment in forestry-related projects has failed to address poverty or benefit local communities. Dr Rowena Maguire’s research focuses on international climate and forest regulation and indigenous and community groups rights and responsibilities in connection with environmental management. Her new book, Global Forest Governance, identifies the fundamental legal principles and governance requirements of Sustainable Forest Management, an introduction to which is provided in her article below.
Resumo:
Regrowing forests on cleared land is a key strategy to achieve both biodiversity conservation and climate change mitigation globally. Maximizing these co-benefits, however, remains theoretically and technically challenging because of the complex relationship between carbon sequestration and biodiversity in forests, the strong influence of climate variability and landscape position on forest development, the large number of restoration strategies possible, and long time-frames needed to declare success. Through the synthesis of three decades of knowledge on forest dynamics and plant functional traits combined with decision science, we demonstrate that we cannot always maximize carbon sequestration by simply increasing the functional trait diversity of trees planted. The relationships between plant functional diversity, carbon sequestration rates above-ground and in the soil are dependent on climate and landscape positions. We show how to manage ‘identities’ and ‘complementarities’ between plant functional traits in order to achieve systematically maximal co-benefits in various climate and landscape contexts. We provide examples of optimal planting and thinning rules that satisfy this ecological strategy and guide the restoration of forests that are rich in both carbon and plant functional diversity. Our framework provides the first mechanistic approach for generating decision-making rules that can be used to manage forests for multiple objectives, and supports joined carbon credit and biodiversity conservation initiatives, such as Reducing Emissions from Deforestation and forest Degradation REDD+. The decision framework can also be linked to species distribution models and socio-economic models in order to find restoration solutions that maximize simultaneously biodiversity, carbon stocks and other ecosystem services across landscapes. Our study provides the foundation for developing and testing cost-effective and adaptable forest management rules to achieve biodiversity, carbon sequestration and other socio-economic co-benefits under global change.
Resumo:
Historically, it appears that some of the WRCF have survived because i) they lack sufficient quantity of commercially valuable species; ii) they are located in remote or inaccessible areas; or iii) they have been protected as national parks and sanctuaries. Forests will be protected when people who are deciding the fate of forests conclude than the conservation of forests is more beneficial, e.g. generates higher incomes or has cultural or social values, than their clearance. If this is not the case, forests will continue to be cleared and converted. In the future, the WRCF may be protected only by focused attention. The future policy options may include strategies for strong protection measures, the raising of public awareness about the value of forests, and concerted actions for reducing pressure on forest lands by providing alternatives to forest exploitation to meet the growing demands of forest products. Many areas with low population densities offer an opportunity for conservation if appropriate steps are taken now by the national governments and international community. This opportunity must be founded upon the increased public and government awareness that forests have vast importance to the welfare of humans and ecosystems' services such as biodiversity, watershed protection, and carbon balance. Also paramount to this opportunity is the increased scientific understanding of forest dynamics and technical capability to install global observation and assessment systems. High-resolution satellite data such as Landsat 7 and other technologically advanced satellite programs will provide unprecedented monitoring options for governing authorities. Technological innovation can contribute to the way forests are protected. The use of satellite imagery for regular monitoring and Internet for information dissemination provide effective tools for raising worldwide awareness about the significance of forests and intrinsic value of nature.
Resumo:
Natural landscapes are increasingly subjected to anthropogenic pressure and fragmentation resulting in reduced ecological condition. In this study we examined the relationship between ecological condition and the soundscape in fragmented forest remnants of south-east Queensland, Australia. The region is noted for its high biodiversity value and increased pressure associated with habitat fragmentation and urbanisation. Ten sites defined by a distinct open eucalypt forest community dominated by spotted gum (Corymbia citriodora ssp. variegata) were stratified based on patch size and patch connectivity. Each site underwent a series of detailed vegetation condition and landscape assessments, together with bird surveys and acoustic analysis using relative soundscape power. Univariate and multivariate analyses indicated that the measurement of relative soundscape power reflects ecological condition and bird species richness, and is dependent on the extent of landscape fragmentation. We conclude that acoustic monitoring technologies provide a cost effective tool for measuring ecological condition, especially in conjunction with established field observations and recordings.
Resumo:
A mixed species reforestation program known as the Rainforestation Farming system was undertaken in the Philippines to develop forms of farm forestry more suitable for smallholders than the simple monocultural plantations commonly used then. In this study, we describe the subsequent changes in stand structure and floristic composition of these plantations in order to learn from the experience and develop improved prescriptions for reforestation systems likely to be attractive to smallholders. We investigated stands aged from 6 to 11 years old on three successive occasions over a 6 year period. We found the number of species originally present in the plots as trees >5 cm dbh decreased from an initial total of 76 species to 65 species at the end of study period. But, at the same time, some new species reached the size class threshold and were recruited into the canopy layer. There was a substantial decline in tree density from an estimated stocking of about 5000 trees per ha at the time of planting to 1380 trees per ha at the time of the first measurement; the density declined by a further 4.9% per year. Changes in composition and stand structure were indicated by a marked shift in the Importance Value Index of species. Over six years, shade-intolerant species became less important and the native shade-tolerant species (often Dipterocarps) increased in importance. Based on how the Rainforestation Farming plantations developed in these early years, we suggest that mixed-species plantations elsewhere in the humid tropics should be around 1000 trees per ha or less, that the proportion of fast growing (and hence early maturing) trees should be about 30–40% of this initial density and that any fruit tree component should only be planted on the plantation margin where more light and space are available for crowns to develop.
Resumo:
Aim Our aim was to clarify the lineage-level relationships for Melomys cervinipes and its close relatives and investigate whether the patterns of divergence observed for these wet-forest-restricted mammals may be associated with recognized biogeographical barriers. Location Mesic closed forest along the east coast of Australia, from north Queensland to mid-eastern New South Wales. Methods To enable rigorous phylogenetic reconstruction, divergence-date estimation and phylogeographical inference, we analysed DNA sequence and microsatellite data from 307 specimens across the complete distribution of M. cervinipes (45 localities). Results Three divergent genetic lineages were found within M. cervinipes, corresponding to geographically delineated northern, central and southern clades. Additionally, a fourth lineage, comprising M. rubicola and M. capensis, was identified and was most closely related to the northern M. cervinipes lineage. Secondary contact of the northern and central lineages was identified at one locality to the north of the Burdekin Gap. Main conclusions Contemporary processes of repeated habitat fragmentation and contraction, local extinction events and subsequent re-expansion across both small and large areas, coupled with the historical influence of the Brisbane Valley Barrier, the St Lawrence Gap and the Burdekin Gap, have contributed to the present phylogeographical structure within M. cervinipes. Our study highlights the need to sample close to the periphery of putative biogeographical barriers or risk missing vital phylogeographical information that may significantly alter the interpretation of biogeographical hypotheses.
Resumo:
This article quantifies the effect of the operating pressure of the H 2 + C 2H 4 gas mixture on the current density and threshold voltage of the electron emission from dense forests of multiwalled carbon nanotubes synthesized using thermal catalytic Chemical Vapor Deposition under near atmospheric pressure process conditions. The results suggest that in the pressure range of interest 400-700 Torr the field emission properties can be substantially improved by operating the process at lower gas pressures when the nanostructure aspect ratios are higher. The obtained threshold voltage ∼1.75 V/μm and the emission current densities ∼10 mA/cm 2 offer competitive advantages compared with the results reported by other authors. Copyright