990 resultados para PLANT DEFENSE


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Noctuids are phytophagous lepidopterans with some species causing significant damage to agriculture. The host plants, in turn, have developed defense mechanisms to cope with them, for instance chemical defenses. In this study we review the literature on plant volatiles induced by noctuids, and discuss the methodologies used to induce the production of volatiles that are usually employed in plant defense mechanisms. Future prospects involving this line of research in pest control are also discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Puroindolines (Pins) and purothionins (Pths) are basic, amphiphilic, cysteine-rich wheat proteins that play a role in plant defense against microbial pathogens. We have examined the co-adsorption and sequential addition of Pins (Pin-a, Pin-b and a mutant form of Pin-b with Trp-44 to Arg-44 substitution) and β-purothionin (β-Pth) model anionic lipid layers, using a combination of surface pressure measurements, external reflection FTIR spectroscopy and neutron reflectometry. Results highlighted differences in the protein binding mechanisms, and in the competitive binding and penetration of lipid layers between respective Pins and β-Pth. Pin-a formed a blanket-like layer of protein below the lipid surface that resulted in the reduction or inhibition of β-Pth penetration of the lipid layer. Wild-type Pin-b participated in co-operative binding with β-Pth, whereas the mutant Pin-b did not bind to the lipid layer in the presence of β-Pth. The results provide further insight into the role of hydrophobic and cationic amino acid residues in antimicrobial activity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

All essential nutrients can affect the incidence and severity of plant diseases. Although silicon (Si) is not considered as an essential nutrient for plants, it stands out for its potential to decrease disease intensity in many crops. The mechanism of Si action in plant resistance is still unclear. Si deposition in plant cell walls raised the hypothesis of a possible physical barrier to pathogen penetration. However, the increased activity of phenolic compounds, polyphenol oxidases and peroxidases in plants treated with Si demonstrates the involvement of this element in the induction of plant defense responses. The studies examined in this review address the role of Si in disease control and the possible mechanisms involved in the mode of Si action in disease resistance in plants.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tomato (Lycopersicon esculentum Mill., Solanum lycopersicon L.) is one of the most popular vegetable throughout the world, and the importance of its cultivation is threatened by a wide array of pathogens. In the last twenty years this plant has been successfully used as a model plant to investigate the induction of defense pathways after exposure to fungal, bacterial and abiotic molecules, showing triggering of different mechanisms of resistance. Understanding these mechanisms in order to improve crop protection is a main goal for Plant Pathology. The aim of this study was to search for general or race-specific molecules able to determine in Solanum lycopersicon immune responses attributable to the main systems of plant defense: non-host, host-specific and induced resistance. Exopolysaccharides extracted by three fungal species (Aureobasidium pullulans, Cryphonectria parasitica and Epicoccum purpurascens), were able to induce transcription of pathogenesis-related (PR) proteins and accumulation of enzymes related to defense in tomato plants cv Money Maker,using the chemical inducer Bion® as a positive control. During the thesis, several Pseudomonas spp. strains were also isolated and tested for their antimicrobial activity and ability to produce antibiotics. Using as a positive control jasmonic acid, one of the selected strain was shown to induce a form of systemic resistance in tomato. Transcription of PRs and reduction of disease severity against the leaf pathogen Pseduomonas syringae pv. tomato was determined in tomato plants cv Money Maker and cv Perfect Peel, ensuring no direct contact between the selected rhizobacteria and the aerial part of the plant. To conclude this work, race-specific resistance of tomato against the leaf mold Cladosporium fulvum is also deepened, describing the project followed at the Phytopathology Laboratory of Wageningen (NL) in 2007, dealing with localization of a specific R-Avr interaction in transfected tomato protoplast cultures through fluorescence microscopy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The defense of plants against herbivores and pathogens involves the participation of an enormous range of different metabolites, some of which act directly as defensive weapons against enemies (toxins or deterrents) and some of which act as components of the complex internal signaling network that insures that defense is timed to enemy attack. Recent work reveals a surprising trend: The same compounds may act as both weapons and signals of defense. For example, two groups of well-studied defensive weapons, glucosinolates and benzoxazinoids, trigger the accumulation of the protective polysaccharide callose as a barrier against aphids and pathogens. In the other direction, several hormones acting in defense signaling (and their precursors and products) exhibit activity as weapons against pathogens. Knowing which compounds are defensive weapons, which are defensive signals and which are both is vital for understanding the functioning of plant defense systems.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To investigate the role of jasmonate in the defense of plants against fungal pathogens, we have studied a mutant of Arabidopsis, fad3–2 fad7–2 fad8, that cannot accumulate jasmonate. Mutant plants were extremely susceptible to root rot caused by the fungal root pathogen Pythium mastophorum (Drechs.), even though neighboring wild-type plants were largely unaffected by this fungus. Application of exogenous methyl jasmonate substantially protected mutant plants, reducing the incidence of disease to a level close to that of wild-type controls. A similar treatment with methyl jasmonate did not protect the jasmonate-insensitive mutant coi1 from infection, showing that protective action of applied jasmonate against P. mastophorum was mediated by the induction of plant defense mechanisms rather than by a direct antifungal action. Transcripts of three jasmonate-responsive defense genes are induced by Pythium challenge in the wild-type but not in the jasmonate-deficient mutant. Pythium species are ubiquitous in soil and root habitats world-wide, but most (including P. mastophorum) are considered to be minor pathogens. Our results indicate that jasmonate is essential for plant defense against Pythium and, because of the high exposure of plant roots to Pythium inoculum in soil, may well be fundamental to survival of plants in nature. Our results further indicate that the fad3–2 fad7–2 fad8 mutant is an appropriate genetic model for studying the role of this important signaling molecule in pathogen defense.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Many pathogen recognition genes, such as plant R-genes, undergo rapid adaptive evolution, providing evidence that these genes play a critical role in plant-pathogen coevolution. Surprisingly, whether rapid adaptive evolution also occurs in genes encoding other kinds of plant defense proteins is unknown. Unlike recognition proteins, plant chitinases attack pathogens directly, conferring disease resistance by degrading chitin, a component of fungal cell walls. Here, we show that nonsynonymous substitution rates in plant class I chitinase often exceed synonymous rates in the plant genus Arabis (Cruciferae) and in other dicots, indicating a succession of adaptively driven amino acid replacements. We identify individual residues that are likely subject to positive selection by using codon substitution models and determine the location of these residues on the three-dimensional structure of class I chitinase. In contrast to primate lysozymes and plant class III chitinases, structural and functional relatives of class I chitinase, the adaptive replacements of class I chitinase occur disproportionately in the active site cleft. This highly unusual pattern of replacements suggests that fungi directly defend against chitinolytic activity through enzymatic inhibition or other forms of chemical resistance and identifies target residues for manipulating chitinolytic activity. These data also provide empirical evidence that plant defense proteins not involved in pathogen recognition also evolve in a manner consistent with rapid coevolutionary interactions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A nonpathogenic mutant of Colletotrichum magna (path-1) was previously shown to protect watermelon (Citrullus lanatus) and cucumber (Cucumis sativus) seedlings from anthracnose disease elicited by wild-type C. magna. Disease protection was observed in stems of path-1-colonized cucurbits but not in cotyledons, indicating that path-1 conferred tissue-specific and/or localized protection. Plant biochemical indicators of a localized and systemic (peroxidase, phenylalanine ammonia-lyase, lignin, and salicylic acid) “plant-defense” response were investigated in anthracnose-resistant and -susceptible cultivars of cucurbit seedlings exposed to four treatments: (1) water (control), (2) path-1 conidia, (3) wild-type conidia, and (4) challenge conditions (inoculation into path-1 conidia for 48 h and then exposure to wild-type conidia). Collectively, these analyses indicated that disease protection in path-1-colonized plants was correlated with the ability of these plants to mount a defense response more rapidly and to equal or greater levels than plants exposed to wild-type C. magna alone. Watermelon plants colonized with path-1 were also protected against disease caused by Colletotrichum orbiculare and Fusarium oxysporum. A model based on the kinetics of plant-defense activation is presented to explain the mechanism of path-1-conferred disease protection.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Genetic resistance in plants to root diseases is rare, and agriculture depends instead on practices such as crop rotation and soil fumigation to control these diseases. "Induced suppression" is a natural phenomenon whereby a soil due to microbiological changes converts from conducive to suppressive to a soilborne pathogen during prolonged monoculture of the susceptible host. Our studies have focused on the wheat root disease "take-all," caused by the fungus Gaeumannomyces graminis var. tritici, and the role of bacteria in the wheat rhizosphere (rhizobacteria) in a well-documented induced suppression (take-all decline) that occurs in response to the disease and continued monoculture of wheat. The results summarized herein show that antibiotic production plays a significant role in both plant defense by and ecological competence of rhizobacteria. Production of phenazine and phloroglucinol antibiotics, as examples, account for most of the natural defense provided by fluorescent Pseudomonas strains isolated from among the diversity of rhizobacteria associated with take-all decline. There appear to be at least three levels of regulation of genes for antibiotic biosynthesis: environmental sensing, global regulation that ties antibiotic production to cellular metabolism, and regulatory loci linked to genes for pathway enzymes. Plant defense by rhizobacteria producing antibiotics on roots and as cohabitants with pathogens in infected tissues is analogous to defense by the plant's production of phytoalexins, even to the extent that an enzyme of the same chalcone/stilbene synthase family used to produce phytoalexins is used to produce 2,4-diacetylphloroglucinol. The defense strategy favored by selection pressure imposed on plants by soilborne pathogens may well be the ability of plants to support and respond to rhizosphere microorganisms antagonistic to these pathogens.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The plant hormones abscisic acid (ABA), jasmonic acid (JA), and ethylene are involved in diverse plant processes, including the regulation of gene expression during adaptive responses to abiotic and biotic stresses. Previously, ABA has been implicated in enhancing disease susceptibility in various plant species, but currently very little is known about the molecular mechanisms underlying this phenomenon. In this study, we obtained evidence that a complex interplay between ABA and JA-ethylene signaling pathways regulate plant defense gene expression and disease resistance. First, we showed that exogenous ABA suppressed both basal and JA-ethylene-activated transcription from defense genes. By contrast, ABA deficiency as conditioned by the mutations in the ABA1 and ABA2 genes, which encode enzymes involved in ABA biosynthesis, resulted in upregulation of basal and induced transcription from JA-ethylene responsive defense genes. Second, we found that disruption of AtMYC2 (allelic to JASMONATE INSENSITIVE1 [JIN1]), encoding a basic helix-loop-helix Leu zipper transcription factor, which is a positive regulator of ABA signaling, results in elevated levels of basal and activated transcription from JA-ethylene responsive defense genes. Furthermore, the jin1/myc2 and aba2-1 mutants showed increased resistance to the necrotrophic fungal pathogen Fusarium oxysporum. Finally, using ethylene and ABA signaling mutants, we showed that interaction between ABA and ethylene signaling is mutually antagonistic in vegetative tissues. Collectively, our results indicate that the antagonistic interactions between multiple components of ABA and the JA-ethylene signaling pathways modulate defense and stress responsive gene expression in response to biotic and abiotic stresses.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pseudomonas syringae is a model bacterial pathogen that penetrates the leaf to reach the plant apoplast, where it replicates causing disease. In order to do that, the pathogen must interfere and suppress a two-tiered plant defense response: PTI (PAMP-Triggered Immunity, or basal resistance) and ETI (Effector-Triggered Immunity). P. syringae uses a type III secretion system to directly deliver effector proteins inside the plant cell cytosol, many of which are known to suppress PTI, some of which are known to trigger ETI, and a handful of which are known to suppress ETI. Bacterial infection can also trigger a systemic plant defense response that protects the plant against additional pathogen attacks known as SAR (Systemic Acquired Resistance). We are particularly interested in the molecular and cellular mechanisms involved in effector-mediated defense evasion by P. syringae, in particular those involved in the suppression of ETI and SAR, and/or mediation of hormone signaling. Here we present data describing effector-mediated interference with plant immunity, by means of acetylation of a key positive regulator of local and systemic responses. Our work identifies a novel plant target for effector function, and characterizes its function. This work illustrates how analyzing the means by which a given effector interferes with its target can provide novel information regarding eukaryotic molecular mechanisms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Citrus black spot (CBS) caused by Guignardia citricarpa represents an important threat to citriculture in Brazil. Limited information is available regarding potential biological control agents and new alternative compounds that may provide protection of orange fruits against the disease. In this study, the effects of commercial products based on Bacillus thuringiensis var. kurstaki (Bt) bacterium, Bt pure isolates and Harpin protein (Messenger (R)) on the postharvest control of CBS, were evaluated in `Valencia` sweet orange fruits harvested for three consecutive years in a citrus grove. The fruits were sprayed with the following products: DiPel (R) WP (Bt, subspecies, kurstaki strain HD-1,16,000 International Units mg(-1), 32 g active ingredient kg(-1)) (1, 20 and 50 mg ml(-1)), Dimy Pel (R) WP (Bt, subspecies, kurstaki, strain HD-1, 17,600 IU mg(-1), 26 g active ingredient l(-1)) (2, 20 and 50 mg ml(-1)), Messenger (R) (3% harpin protein) (1 and 2 mg ml(-1)) and fungicide Tecto (R) Flowable SC (thiabendazole, 485 gl(-1)) (0.8g active ingredient l(-1)), besides the Bt isolates, Bt- HD-567, Bt- DiPel and Bt- Dimy (9 x 10(8) CFU ml(-1)). Ten days after treatment, the number of newly developed CBS lesions and pycnidia produced were evaluated using fifty fruits per treatment. The Dimy Pel (R) and Messenger (R) reduced the number of new developed CBS lesions on fruits in up to 67% and 62%, respectively. All applied treatments drastically decreased the number of pycnidia produced in the CBS lesions on orange fruits with 85% to 96% reductions compared to the untreated control. Volatile compounds produced by the isolates Bt- HD-567, Bt- Dimy and Bt- DiPel, reduced the number of lesions on treated fruits by 70%, 65% and 71% compared to the control, respectively. In addition, the survival of Bt isolates on orange fruit surfaces were evaluated by recovering and quantifying the number of CFU every seven days for up to 28 days. The declines in survival rates on orange fruit surfaces were drastic for the three strains of Bt in the first week. The CFU numbers of all applied isolates declined by 4 to 5 orders of magnitude after storage at room temperature for 28 days. In vitro assays revealed that the Bt isolates significantly reduced the mycelial growth of the pathogen, ranging from 32% to 51%, compared to the control, whereas no inhibitory effect was observed in the presence of Messenger (R). (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Caterpillars of Euploea core corinna (W. S. Macleay) sever leaf veins prior to feeding on their latex-bearing host plants, which restricts the flow of latex at feeding sites. The severing of leaf veins by insects feeding on latex-bearing plants is commonly referred to as 'sabotaging' and is thought to be an evolved response by the insect to counter the negative effects of feeding on latex-rich leaves. Sabotaging behaviour is described for all instars of E. core corinna, with particular attention given to neonates. Vein cutting by neonate E. core corinna caterpillars can occur within 2 h of hatching, with most caterpillars establishing feeding sites within 10 h. Commonly, first instars cut an are-shaped row of leaf side-veins parallel to the leaf margin, but they may also cut the leaf mid-rib in a fashion similar to older instar larvae. From a sample of 50 E. core corinna larvae, representing all instars, we found that the diameters of the veins cut by caterpillars are closely correlated to larval head width (r=0.90). Through manipulative experiments, we demonstrate for the first time that sabotaging behaviour in neonate caterpillars imposes no detectable short-term physiological costs on those caterpillars.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neonate Lepidoptera are confronted with the daunting task of establishing themselves on a food plant. The factors relevant to this process need to be considered at spatial and temporal scales relevant to the larva and not the investigator. Neonates have to cope with an array of plant surface characters as well as internal characters once the integument is ruptured. These characters, as well as microclimatic conditions, vary within and between plant modules and interact with larval feeding requirements, strongly affecting movement behavior, which may be extensive even for such small organisms. In addition to these factors, there is an array of predators, pathogens, and parasitoids with which first instars must contend. Not surprisingly, mortality in neonates is high but can vary widely. Experimental and manipulative studies, as well as detailed observations of the animal, are vital if the subtle interaction of factors responsible for this high and variable mortality are to be understood. These studies are essential for an understanding of theories linking female oviposition behavior with larval survival, plant defense theory, and population dynamics, as well as modern crop resistance breeding programs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The plant cyclotides are a family of 28 to 37 amino acid miniproteins characterized by their head-to-tail cyclized peptide backbone and six absolutely conserved Cys residues arranged in a cystine knot motif: two disulfide bonds and the connecting backbone segments form a loop that is penetrated by the third disulfide bond. This knotted disulfide arrangement, together with the cyclic peptide backbone, renders the cyclotides extremely stable against enzymatic digest as well as thermal degradation, making them interesting targets for both pharmaceutical and agrochemical applications. We have examined the expression patterns of these fascinating peptides in various Viola species (Violaceae). All tissue types examined contained complex mixtures of cyclotides, with individual profiles differing significantly. We provide evidence for at least 57 novel cyclotides present in a single Viola species (Viola hederacea). Furthermore, we have isolated one cyclotide expressed only in underground parts of V, hederacea and characterized its primary and three-dimensional structure. We propose that cyclotides constitute a new family of plant defense peptides, which might constitute an even larger and, in their biological function, more diverse family than the well-known plant defensins.