945 resultados para PITUITARY GLAND
Resumo:
Secretion of LH and FSH from the anterior pituitary is regulated primarily by hypothalamic GnRH and ovarian steroid hormones. More recent evidence indicates regulatory roles for certain members of the transforming growth factor beta (TGF beta) superfamily including inhibin and activin. The aim of this study was to identify expression of mRNAs encoding key receptors and ligands of the inhibin/activin system in the hen pituitary gland and to monitor their expression throughout the 24-25-h ovulatory cycle. Hens maintained on long days (16 h light/8 h dark) were killed 20, 12, 6 and 2 h before predicted ovulation of a midsequence egg (n = 8 per group). Anterior pituitary glands were removed, RNA extracted and cDNA synthesized. Plasma concentrations of LH, FSH, progesterone and inhibin A were measured. Real-time quantitative PCR was used to quantify pituitary expression of mRNAs encoding betaglycan, activin receptor (ActR) subtypes (type I, IIA), GnRH receptor (GnP,H-R), LH beta subunit, FSH beta subunit and GAPDH. Levels of mRNA for inhibin/activin beta A and beta B subunits, inhibin alpha subunit, follistatin and ActRIIB mRNA in pituitary were undetectable by quantitative PCR (< 2 amol/reaction). Significant changes in expression (P < 0.05) of ActRIIA and betaglycan mRNA were found, both peaking 6 h before ovulation just prior to the preovulatory LH surge and reaching a nadir 2 h before ovulation, just after the LH surge. There were no significant changes in expression of ActRI mRNA throughout the cycle although values were correlated with mRNA levels for both ActRIIA (r=0.77; P < 0.001) and betaglycan (r=0.45; P < 0.01). Expression of GnRH-R mRNA was lowest 20 h before ovulation and highest (P < 0.05) 6 h before ovulation; values were weakly correlated with betaglycan (r=0.33; P=0.06) and ActRIIA (r=0.34; P=0.06) mRNA levels. Expression of mRNAs encoding LH beta and FSH beta subunit were both lowest (P < 0.05) after the LH surge, 2 h before ovulation. These results are consistent with an endocrine, but not a local intrapituitary, role of inhibin-related proteins in modulating gonadotroph function during the ovulatory cycle of the hen, potentially through interaction with betaglycan and ActRIIA. In contrast to mammals, intrapituitary expression of inhibin/activin subunits and follistatin appears to be extremely low or absent in the domestic fowl.
Resumo:
Secretion of LH and FSH from the anterior pituitary is regulated primarily by hypothalamic GnRH and ovarian steroid hormones. More recent evidence indicates regulatory roles for certain members of the transforming growth factor beta (TGF beta) superfamily including inhibin and activin. The aim of this study was to identify expression of mRNAs encoding key receptors and ligands of the inhibin/activin system in the hen pituitary gland and to monitor their expression throughout the 24-25-h ovulatory cycle. Hens maintained on long days (16 h light/8 h dark) were killed 20, 12, 6 and 2 h before predicted ovulation of a midsequence egg (n = 8 per group). Anterior pituitary glands were removed, RNA extracted and cDNA synthesized. Plasma concentrations of LH, FSH, progesterone and inhibin A were measured. Real-time quantitative PCR was used to quantify pituitary expression of mRNAs encoding betaglycan, activin receptor (ActR) subtypes (type I, IIA), GnRH receptor (GnP,H-R), LH beta subunit, FSH beta subunit and GAPDH. Levels of mRNA for inhibin/activin beta A and beta B subunits, inhibin alpha subunit, follistatin and ActRIIB mRNA in pituitary were undetectable by quantitative PCR (< 2 amol/reaction). Significant changes in expression (P < 0.05) of ActRIIA and betaglycan mRNA were found, both peaking 6 h before ovulation just prior to the preovulatory LH surge and reaching a nadir 2 h before ovulation, just after the LH surge. There were no significant changes in expression of ActRI mRNA throughout the cycle although values were correlated with mRNA levels for both ActRIIA (r=0.77; P < 0.001) and betaglycan (r=0.45; P < 0.01). Expression of GnRH-R mRNA was lowest 20 h before ovulation and highest (P < 0.05) 6 h before ovulation; values were weakly correlated with betaglycan (r=0.33; P=0.06) and ActRIIA (r=0.34; P=0.06) mRNA levels. Expression of mRNAs encoding LH beta and FSH beta subunit were both lowest (P < 0.05) after the LH surge, 2 h before ovulation. These results are consistent with an endocrine, but not a local intrapituitary, role of inhibin-related proteins in modulating gonadotroph function during the ovulatory cycle of the hen, potentially through interaction with betaglycan and ActRIIA. In contrast to mammals, intrapituitary expression of inhibin/activin subunits and follistatin appears to be extremely low or absent in the domestic fowl.
Resumo:
Endocrine system plays a major role in the control of reproductive functions which are regulated by the hypothalamus-pituitary-gonad axis and its interactions. FSH and LH receptor genes are expressed at the gonads and GnRH receptor gene is expressed at the anterior pituitary gland. Misense mutations of the FSH, LH or GnRH receptors, activating or inactivating their functions in mammals, are potentially useful to allow the understanding of the role of this group of gonadotropins in reproductive phenotypes as early puberty and birth interval length. In the present study, polymorphisms in bovine exon 11 and 3`UTR of LHR, exon 10 and 3`UTR of FSHR and GnRHR genes were characterized with some of them resulting in changes in the aminoacidic chain. These polymorphic sites were found in a Bos taurus indicus (Nellore) female population by means of PCR-SSCP and DNA sequencing. Association between nucleotidic/aminoacidic changes and early puberty were determined by Chi-square analysis. It was found association between FSHR 3`UTR polymorphisms at position 2181, 2248 and 2249 bp and early puberty phenotype (p < 0.05). The presence of these new molecular markers might be considered in further studies to validate its correlation with early puberty or other reproduction associated phenotypes in cattle breeds. (C) 2007 Published by Elsevier B.V.
Resumo:
Pituitary apoplexy (PA) is a rare and potentially life-threatening syndrome resulting from an acute infarction or hemorrhage of the pituitary gland. Although the pathogenesis is not fully understood, some predisposing factors such as pituitary stimulation tests, diabetes mellitus, anticoagulant or antiplatelet aggregation therapy, head trauma, and high blood pressure may play a role in its pathophysiology. Octreotide is the mainstay of medical treatment for acromegaly. The majority of reported complications of octreotide therapy are gastrointestinal. We report the case of a 51-year-old acromegalic woman who developed pituitary apoplexy within the context of high blood pressure and a single dose of long-acting octreotide. Our data suggest that the combination of hypertension and octreotide therapy enhances the risk of pituitary apoplexy.
Resumo:
The present study investigated the effects of moderate physical training on some of the parameters in the GH-IGF axis in experimental diabetic rats. Male Wistar rats were allocated into the following groups: sedentary control, trained control, sedentary diabetic, trained diabetic. Diabetes was induced by alloxan (32 mg/kg, b.w. iv). The physical training protocol consisted of 1 h swimming session/day, 5 days/week for 8 weeks supporting a load corresponding to 90% of maximal lactate steady state. After the experimental period, blood was collected to measure serum glucose, insulin, triglycerides, albumin, insulin-like growth factors-I (IGF-I), and growth hormone (GH). Pituitary gland was removed for GH quantification. Diabetes increased blood glucose and triglycerides and decreased insulin, IGF-I, serum and pituitary GH. Physical training decreased glucose and triglycerides, and also counteracted the reduction of serum IGF-I in diabetic rats. In conclusion, physical training recovered serum IGF-I showing no alteration of serum or pituitary GH levels.
Resumo:
Endocrine system plays a major role in the control of reproductive functions which are regulated by the hypothalamus-pituitary-gonad axis and its interactions. FSH and LH receptor genes are expressed at the gonads and GnRH receptor gene is expressed at the anterior pituitary gland. Misense mutations of the FSH, LH or GnRH receptors, activating or inactivating their functions in mammals, are potentially useful to allow the understanding of the role of this group of gonadotropins in reproductive phenotypes as early puberty and birth interval length. In the present study, polymorphisms in bovine exon 11 and 3'UTR of LHR, exon 10 and 3'UTR of FSHR and GnRHR genes were characterized with some of them resulting in changes in the aminoacidic chain. These polymorphic sites were found in a Bos taurus indicus (Nellore) female population by means of PCR-SSCP and DNA sequencing. Association between nucleotidic/aminoacidic changes and early puberty were determined by Chi-square analysis. It was found association between FSHR 3'UTR polymorphisms at position 2181, 2248 and 2249 bp and early puberty phenotype (p < 0.05). The presence of these new molecular markers might be considered in further studies to validate its correlation with early puberty or other reproduction associated phenotypes in cattle breeds. (C) 2007 Published by Elsevier B.V.
Resumo:
Objective - To investigate the effects of inhalation and total IV anesthesia on pituitary-adrenal activity in ponies. Animals - 9 healthy ponies: 5 geldings and 4 mares. Procedure - Catheters were placed in the cavernous sinus below the pituitary gland and in the subarachnoid space via the lumbosacral space. After 72 hours, administration of acepromazine was followed by induction of anesthesia with thiopentone and maintenance with halothane (halothane protocol), or for the IV protocol, anesthesia induction with detomidine and ketamine was followed by maintenance with IV infusion of a detomidine-ketamine-guaifenesin combination. Arterial blood pressure and gas tensions were measured throughout anesthesia. Peptide and catecholamine concentrations were measured in pituitary effluent, peripheral plasma, and CSF. Peripheral plasma cortisol, glucose, and lactate concentrations also were measured. Results - Intravenous anesthesia caused less cardiorespiratory depression than did halothane. ACTH, metenkephalin, arginine vasopressin, and norepinephrine pituitary effluent and peripheral plasma concentrations were higher during halothane anesthesia, with little change during intravenous anesthesia. Pituitary effluent plasma β-endorphin and peripheral plasma cortisol concentrations increased during halothane anesthesia only. Dynorphin concentrations did not change in either group. Hyperglycemia developed during intravenous anesthesia only Minimal changes occurred in CSF hormonal concentrations during anesthesia. Conclusion - The pituitary gland has a major role in maintaining circulating peptides during anesthesia. Compared with halothane, IV anesthesia appeared to suppress pituitary secretion.
Resumo:
The effects of breed and of recombinant bovine somatotropin (rbST) treatment on growth hormone gene expression were studied in young bulls. The experiment was completely randomized in a [2 × 2]-factorial arrangement, using two levels of rbst (0 or 250 mg/animal/14 days), and two breed groups (Nelore and Simmental x Nelore crossbred). A CDNA encoding Bos indicus growth hormone was cloned and sequenced for use as a probe in Northern and dot blot analyses. Compared to the Bos taurus structural gene, the Bos indicus CDNA was found to begin 21 bases downstream from the transcription initiation site and had only two discrepancies (C to T at position 144-His and T to C at position 354-Phe), without changes in the polypeptide sequence. However, two amino acid substitutions were found for Bubalus spp., which belong to the same tribe. The rbst treatment did not change any of the characteristics evaluated (body and pituitary gland weights, growth hormone MRNA expression level). Crossbred animals had significantly higher body weight and heavier pituitaries than Nelore cattle. Pituitary weight was proportional to body weight in both breed groups. Growth hormone MRNA expression in the pituitary was similar (P>0.075) for both breed and hormonal treatment groups, but was 31.9% higher in the pure Nelore group, suggesting that growth hormone gene transcription regulation differs among these breeds.
Resumo:
The objective was to evaluate when the LH reserve was re-established in postpartum Nellore (Bos indicus) cows by evaluating the response of the hypothalamic-pituitary axis responsiveness to exogenous GnRH or estradiol benzoate (EB). Additionally, we tested the influence of dietary supplementation (SUPL) and calf removal (CR) on the duration of postpartum anestrus. Ninety multiparous lactating Nellore cows were randomly assigned to eight groups. The EB and GnRH groups received 1.0 mg EB (N = 7), and 50 μg lecireline (N = 16), respectively. Additional cows were given the same hormones, and subjected to either nutritional supplementation (EB-SUPL, N = 9; GnRH-SUPL, N = 16), or calf removal at 72 hours after calving (EB-CR, N = 4; GnRH-CR, N = 13). The remaining two groups were the LH (12.5 mg, N = 14) and control groups (saline, N = 11). Hormones were administered weekly from 7 (±5) days postpartum to first ovulation (detection of a CL during a weekly ultrasonographic examination). Blood samples were collected just before and 2 hours (GnRH, LH, and control groups) or 18 hours (EB groups) after hormone or saline (control) administration. Ovulation occurred as early as 15 days postpartum in the GnRH group. The mean ± SEM intervals (days) from calving to first ovulation were EB, 87.7 ± 4.2; EB-CR, 20.3 ± 1.2; EB-SUPL, 60.3 ± 3.2; GnRH, 40.4 ± 2.1; GnRH-CR, 21.0 ± 1.1; GnRH-SUPL, 26.4 ± 1.1; LH, 35.6 ± 1.1; and control, 60.9 ± 2.1. We concluded that there was sufficient LH in the pituitary gland (of Nellore cows) from the second week postpartum to induce ovulation in response to exogenous GnRH. Additionally, calf removal and nutritional supplementation reduced, by 2 to 4 weeks, the interval from calving to an LH increase and ovulation induced by GnRH or EB. © 2013.
Resumo:
Objective: To compare cost-effectiveness between pituitary down-regulation with a GnRH agonist (GnRHa) short regimen on alternate days and GnRH antagonist (GnRHant) multidose protocol on in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) outcome. Design: Prospective, randomized. Setting: A private center. Patient(s): Patients were randomized into GnRHa (n = 48) and GnRHant (n = 48) groups. Intervention(s): GnRHa stimulation protocol: administration of triptorelin on alternate days starting on the first day of the cycle, recombinant FSH (rFSH), and recombinant hCG (rhCG) microdose. GnRHant protocol: administration of a daily dose of rFSH, cetrorelix, and rhCG microdose. Main Outcome Measure(s): ICSI outcomes and treatment costs. Result(s): A significantly lower number of patients underwent embryo transfer in the GnRHa group. Clinical pregnancy rate was significantly lower and miscarriage rate was significantly higher in the GnRHa group. It was observed a significant lower cost per cycle in the GnRHa group compared with the GnRHant group ($5,327.80 ± 387.30 vs. $5,900.40 ± 472.50). However, mean cost per pregnancy in the GnRHa was higher than in the GnRHant group ($19,671.80 ± 1,430.00 vs. $11,328.70 ± 907.20). Conclusion(s): Although the short controlled ovarian stimulation protocol with GnRHa on alternate days, rFSH, and rhCG microdose may lower the cost of an individual IVF cycle, it requires more cycles to achieve pregnancy. Clinical Trial Registration Number: NCT01468441. © 2013 by American Society for Reproductive Medicine.
Resumo:
Isolated GH deficiency type II (IGHD II) is the autosomal dominant form of GHD. In the majority of the cases, this disorder is due to specific GH-1 gene mutations that lead to mRNA missplicing and subsequent loss of exon 3 sequences. When misspliced RNA is translated, it produces a toxic 17.5-kDa GH (Delta3GH) isoform that reduces the accumulation and secretion of wild-type-GH. At present, patients suffering from this type of disease are treated with daily injections of recombinant human GH in order to maintain normal growth. However, this type of replacement therapy does not prevent toxic effects of the Delta3GH mutant on the pituitary gland, which can eventually lead to other hormonal deficiencies. We developed a strategy involving Delta3GH isoform knockdown mediated by expression of a microRNA-30-adapted short hairpin RNA (shRNA) specifically targeting the Delta3GH mRNA of human (shRNAmir-Delta3). Rat pituitary tumor GC cells expressing Delta3GH upon doxycycline induction were transduced with shRNAmir-Delta3 lentiviral vectors, which significantly reduced Delta3GH protein levels and improved human wild-type-GH secretion in comparison with a shRNAmir targeting a scrambled sequence. No toxicity due to shRNAmir expression could be observed in cell proliferation assays. Confocal microscopy strongly suggested that shRNAmir-Delta3 enabled the recovery of GH granule storage and secretory capacity. These viral vectors have shown their ability to stably integrate, express shRNAmir, and rescue IGHD II phenotype in rat pituitary tumor GC cells, a methodology that opens new perspectives for the development of gene therapy to treat IGHD patients.
Resumo:
As pituitary function depends on the integrity of the hypothalamic-pituitary axis, any defect in the development and organogenesis of this gland may account for a form of combined pituitary hormone deficiency (CPHD). Although pit-1 was 1 of the first factors identified as a cause of CPHD in mice, many other homeodomain and transcription factors have been characterized as being involved in different developmental stages of pituitary gland development, such as prophet of pit-1 (prop-1), P-Lim, ETS-1, and Brn 4. The aims of the present study were first to screen families and patients suffering from different forms of CPHD for PROP1 gene alterations, and second to define possible hot spots and the frequency of the different gene alterations found. Of 73 subjects (36 families) analyzed, we found 35 patients, belonging to 18 unrelated families, with CPHD caused by a PROP1 gene defect. The PROP1 gene alterations included 3 missense mutations, 2 frameshift mutations, and 1 splice site mutation. The 2 reported frameshift mutations could be caused by any 2-bp GA or AG deletion at either the 148-GGA-GGG-153 or 295-CGA-GAG-AGT-303 position. As any combination of a GA or AG deletion yields the same sequencing data, the frameshift mutations were called 149delGA and 296delGA, respectively. All but 1 mutation were located in the PROP1 gene encoding the homeodomain. Importantly, 3 tandem repeats of the dinucleotides GA at location 296-302 in the PROP1 gene represent a hot spot for CPHD. In conclusion, the PROP1 gene seems to be a major candidate gene for CPHD; however, further studies are needed to evaluate other genetic defects involved in pituitary development.
Resumo:
Despite much attention, the function of oligosaccharide chains of glycoproteins remains largely unknown. Our understanding of oligosaccharide function in vivo has been limited to the use of reagents and targeted mutations that eliminate entire oligosaccharide chains. However, most, if not all biological functions for oligosaccharides have been attributed to specific terminal sequences on these oligosaccharides, yet there have been few studies to examine the consequences of modifying terminal oligosaccharide structures in vivo. To address this issue, mice were created bearing a targeted mutation in $\beta$1,4-galactosyltransferase, an enzyme responsible for elaboration of many of the proposed biologically-active carbohydrate epitopes. Most galactosyltransferase-null mice died within the first few weeks after birth and were characterized by stunted growth, thin skin, sparse hair, and dehydration. In addition, the adrenal cortices were poorly stratified and spermatogenesis was delayed. The few surviving adults had puffy skin (myxedema), difficulty delivering pups at birth (dystocia), and failed to lactate (agalactosis). All of these defects are consistant with endocrine insufficiency, which was confirmed by markedly decreased levels of serum thyroxine. The anterior pituitary gland appeared functionally delayed in newborn mutant mice, since the constituent cells were quiescent and nonsecretory, unlike that of control littermates. However, the anterior pituitary acquired a normal secretory phenotype during neonatal development, although it remained abnormally small and its glycoprotein hormones were devoid of $\beta$1,4-galactosyl residues. These results support in vitro studies suggesting that incomplete glycosylation of pituitary hormones leads to the creation of hormone antagonists that down regulate subsequent endocrine function producing polyglandular endocrine insufficiency. More surprisingly, the fact that some mice survive this neonatal period indicates the presence of a previously unrecognized compensatory pathway for glycoprotein hormone glycosylation and/or action.^ In addition to its well-studied biosynthetic function in the Golgi complex, a GalTase isoform is also expressed on the sperm surface where it functions as a gamete receptor during fertilization by binding to its oligosaccharide ligand on the egg coat glycoprotein, ZP3. Aggregation of GalTase by multivalent ZP3 oligosaccharides activates a G-protein cascade leading to the acrosome reaction. Although GalTase-null males are fertile, the mutant sperm bind less ZP3 than wild-type sperm, and are unable to undergo the acrosome reaction in response to either zona pellucida glycoproteins or to anti-GalTase anti-serum, as do wild-type sperm. However, mutant and wild-type sperm undergo the acrosome reaction normally in response to calcium ionophore which bypasses the requirement for ZP3 binding. Interestingly, the phenotype of the GalTase-null sperm is reciprocal to that of sperm that overexpress surface GalTAse and which bind more ZP3 leading to precocious acrosome reactions. These results confirm that GalTase functions as at least one of the sperm receptors for ZP3, and that GalTase participates in the ZP3-induced signal transduction pathway during zona pellucida-induced acrosome reactions. ^
Resumo:
The adult male golden hamster, when exposed to blinding (BL), short photoperiod (SP), or daily melatonin injections (MEL) demonstrates dramatic reproductive collapse. This collapse can be blocked by removal of the pineal gland prior to treatment. Reproductive collapse is characterized by a dramatic decrease in both testicular weight and serum gonadotropin titers. The present study was designed to examine the interactions of the hypothalamus and pituitary gland during testicular regression, and to specifically compare and contrast changes caused by the three commonly employed methods of inducing testicular regression (BL,SP,MEL). Hypothalamic LHRH content was altered by all three treatments. There was an initial increase in content of LHRH that occurred concomitantly with the decreased serum gonadotropin titers, followed by a precipitous decline in LHRH content which reflected the rapid increases in both serum LH and FSH which occur during spontaneous testicular recrudescence. In vitro pituitary responsiveness was altered by all three treatments: there was a decline in basal and maximally stimulatable release of both LH and FSH which paralleled the fall of serum gonadotropins. During recrudescence both basal and maximal release dramatically increased in a manner comparable to serum hormone levels. While all three treatments were equally effective in their ability to induce changes at all levels of the endocrine system, there were important temporal differences in the effects of the various treatments. Melatonin injections induced the most rapid changes in endocrine parameters, followed by exposure to short photoperiod. Blinding required the most time to induce the same changes. This study has demonstrated that pineal-mediated testicular regression is a process which involves dynamic changes in multiply-dependent endocrine relationships, and proper evaluation of these changes must be performed with specific temporal events in mind. ^