978 resultados para PIN diodes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effective control of room-temperature electroluminescence of n-ZnMgO/p-GaN light-emitting diodes (LEDs) over both emission intensity and wavelength is demonstrated. With varied Mg concentration, the intensity of LEDs in the near-ultraviolet region is increased due to the effective radiative recombination in the ZnMgO layer. Furthermore, the emission wavelength is shifted to the green/yellow spectral region by employing an indium-tin-oxide thin film as the dopant source, where thermally activated indium diffusion creates extra deep defect levels for carrier recombination. These results clearly demonstrate the effectiveness of controlled metal incorporation in achieving high energy efficiency and spectral tunability of the n-ZnMgO/p-GaN LED devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Commercial products using organic light emitting diode (OLED) display technology have begun to appear in cell phones, mp3 players and even televisions. One key area that has allowed and will allow for this technology to continue its ascension into the flat panel display and lighting markets is materials R and D. From this perspective, recent progress in cubic silsesquioxane (SSQ) based materials may provide some new advantageous properties well suited for OLEDs. In this feature article we provide an overview of recent progress in the synthesis, characterization and implementation of SSQ-based materials with properties well suited for application in solution processable organic/polymer electronics, specifically OLEDs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis and characterisation of 2,5-bis(5′-hexyl-[2,2′- bithiophen]-5-yl)pyridine (Th4PY) and its use as a blue emitter in organic light emitting diodes (OLEDs) is reported. Th4PY was synthesised in high yield using a straightforward Suzuki coupling route with commercially available starting materials. As Th4PY is both soluble and has low molecular weight, blue OLEDs were fabricated using both spin-coating and vacuum deposition thin film processing techniques to study the effect of processing on device performance. OLED devices using a spin-coated layer consisting of 4′,4′′- tris(N-carbazolyl)triphenylamine (TCTA) and 2-(4-biphenylyl)-5-(4-tert- butylphenyl)-1,3,4-oxadiazole (PBD) as a host matrix together with Th4PY as emitter exhibited highly efficient sky-blue emission with a low turn-on voltage of 3V, a maximum brightness close to 15000cdm-2 at 8V, and a maximum luminous efficiency of 7.4cdA -1 (6.3lmW -1) with CIE coordinates of x≤0.212, y≤0.320. The device performance characteristics are compared using various matrices and processing techniques. The promising sky-blue OLED performance, solution processability, and ambient stability make Th4PY a promising blue emitter for application in OLEDs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose Two diodes which do not require correction factors for small field relative output measurements are designed and validated using experimental methodology. This was achieved by adding an air layer above the active volume of the diode detectors, which canceled out the increase in response of the diodes in small fields relative to standard field sizes. Methods Due to the increased density of silicon and other components within a diode, additional electrons are created. In very small fields, a very small air gap acts as an effective filter of electrons with a high angle of incidence. The aim was to design a diode that balanced these perturbations to give a response similar to a water-only geometry. Three thicknesses of air were placed at the proximal end of a PTW 60017 electron diode (PTWe) using an adjustable “air cap”. A set of output ratios (ORfclin Det ) for square field sizes of side length down to 5 mm was measured using each air thickness and compared to ORfclin Det measured using an IBA stereotactic field diode (SFD). k fclin, f msr Qclin,Qmsr was transferred from the SFD to the PTWe diode and plotted as a function of air gap thickness for each field size. This enabled the optimal air gap thickness to be obtained by observing which thickness of air was required such that k fclin, f msr Qclin,Qmsr was equal to 1.00 at all field sizes. A similar procedure was used to find the optimal air thickness required to make a modified Sun Nuclear EDGE detector (EDGEe) which s “correction-free” in small field relative dosimetry. In addition, the feasibility of experimentally transferring k fclin, f msr Qclin,Qmsr values from the SFD to unknown diodes was tested by comparing the experimentally transferred k fclin, f msr Qclin,Qmsr values for unmodified PTWe and EDGEe diodes to Monte Carlo simulated values. Results 1.0 mm of air was required to make the PTWe diode correction-free. This modified diode (PTWeair) produced output factors equivalent to those in water at all field sizes (5–50 mm). The optimal air thickness required for the EDGEe diode was found to be 0.6 mm. The modified diode (EDGEeair) produced output factors equivalent to those in water, except at field sizes of 8 and 10 mm where it measured approximately 2% greater than the relative dose to water. The experimentally calculated k fclin, f msr Qclin,Qmsr for both the PTWe and the EDGEe diodes (without air) matched Monte Carlo simulated results, thus proving that it is feasible to transfer k fclin, f msr Qclin,Qmsr from one commercially available detector to another using experimental methods and the recommended experimental setup. Conclusions It is possible to create a diode which does not require corrections for small field output factor measurements. This has been performed and verified experimentally. The ability of a detector to be “correction-free” depends strongly on its design and composition. A nonwater-equivalent detector can only be “correction-free” if competing perturbations of the beam cancel out at all field sizes. This should not be confused with true water equivalency of a detector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There have been substantial advances in small field dosimetry techniques and technologies, over the last decade, which have dramatically improved the achievable accuracy of small field dose measurements. This educational note aims to help radiation oncology medical physicists to apply some of these advances in clinical practice. The evaluation of a set of small field output factors (total scatter factors) is used to exemplify a detailed measurement and simulation procedure and as a basis for discussing the possible effects of simplifying that procedure. Field output factors were measured with an unshielded diode and a micro-ionisation chamber, at the centre of a set of square fields defined by a micro-multileaf collimator. Nominal field sizes investigated ranged from 6×6 to 98×98 mm2. Diode measurements in fields smaller than 30 mm across were corrected using response factors calculated using Monte Carlo simulations of the full diode geometry and daisy-chained to match micro-chamber measurements at intermediate field sizes. Diode measurements in fields smaller than 15 mm across were repeated twelve times over three separate measurement sessions, to evaluate the to evaluate the reproducibility of the radiation field size and its correspondence with the nominal field size. The five readings that contributed to each measurement on each day varied by up to 0.26%, for the “very small” fields smaller than 15 mm, and 0.18% for the fields larger than 15 mm. The diode response factors calculated for the unshielded diode agreed with previously published results, within 1.6%. The measured dimensions of the very small fields differed by up to 0.3 mm, across the different measurement sessions, contributing an uncertainty of up to 1.2% to the very small field output factors. The overall uncertainties in the field output factors were 1.8% for the very small fields and 1.1% for the fields larger than 15 mm across. Recommended steps for acquiring small field output factor measurements for use in radiotherapy treatment planning system beam configuration data are provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated a potential source of inaccuracy for diode measurements in modulated beams; the effect of diode housing asymmetry on measurement results. The possible effects of diode housing asymmetry on the measurement of steep dose gradients were evaluated by measuring 5x5 cm2 beam profiles, with three cylindrical diodes and two commonly used ionization chambers, with each dosimeter positioned in a 3D scanning water tank with its stem perpendicular to the beam axis (horizontal) and parallel to the direction of scanning. The resulting profiles were used to compare the penumbrae measured with the diode stem pointing into (equivalent to a “stem-first” setup) and out of the field (equivalent to a “stem-last” setup) in order to evaluate the effects of dosimeter alignment and thereby identify the effects of dosimeter asymmetry. The stem-first and stem-last orientations resulted in differences of up to 0.2 mm in the measured 20-80% penumbra widths and differences of up to 0.4 mm in the off axis position of the 90% isodose. These differences, which are smaller than previously reported for older model dosimeters, were apparent in the profile results for both diodes and small volume ionization chambers. As an extension to this study, the practical use of all five dosimeters was exemplified by measuring point doses in IMRT test beams. These measurements showed good agreement (within 2%) between the diodes and the small volume ionization chamber, with all of these dosimeters being able to identify a region 3% under-dosage which was not identified by a larger volume (6 mm diameter) ionization chamber. The results of this work should help to remove some of the barriers to the use of diodes for modulated radiotherapy dosimetry in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bottom emitting organic light emitting diodes (OLEDs) can suffer from lower external quantum efficiencies (EQE) due to inefficient out-coupling of the generated light. Herein, it is demonstrated that the current efficiency and EQE of red, yellow, and blue fluorescent single layer polymer OLEDs is significantly enhanced when a MoOx(5 nm)/Ag(10 nm)/MoOx(40 nm) stack is used as the transparent anode in a top emitting OLED structure. A maximum current efficiency and EQE of 21.2 cd/A and 6.7%, respectively, was achieved for a yellow OLED, while a blue OLED achieved a maximum of 16.5 cd/A and 10.1%, respectively. The increase in light out-coupling from the top-emitting OLEDs led to increase in efficiency by a factor of up to 2.2 relative to the optimised bottom emitting devices, which is the best out-coupling reported using solution processed polymers in a simple architecture and a significant step forward for their use in large area lighting and displays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitrogen plasma exposure (NPE) effects on indium doped bulk n-CdTe are reported here. Excellent rectifying characteristics of Au/n-CdTe Schottky diodes, with an increase in the barrier height, and large reverse breakdown voltages are observed after the plasma exposure. Surface damage is found to be absent in the plasma exposed samples. The breakdown mechanism of the heavily doped Schottky diodes is found to shift from the Zener to avalanche after the nitrogen plasma exposure, pointing to a change in the doping close to the surface which was also verified by C-V measurements. The thermal stability of the plasma exposure process is seen up to a temperature of 350 degrees C, thereby enabling the high temperature processing of the samples for device fabrication. The characteristics of the NPE diodes are stable over a year implying excellent diode quality. A plausible model based on Fermi level pinning by acceptor-like states created by plasma exposure is proposed to explain the observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A continuum method of analysis is presented in this paper for the problem of a smooth rigid pin in a finite composite plate subjected to uniaxial loading. The pin could be of interference, push or clearance fit. The plate is idealized to an orthotropic sheet. As the load on the plate is progressively increased, the contact along the pin-hole interface is partial above certain load levels in all three types of fit. In misfit pins (interference or clearance), such situations result in mixed boundary value problems with moving boundaries and in all of them the arc of contact and the stress and displacement fields vary nonlinearly with the applied load. In infinite domains similar problems were analysed earlier by ‘inverse formulation’ and, now, the same approach is selected for finite plates. Finite outer domains introduce analytical complexities in the satisfaction of boundary conditions. These problems are circumvented by adopting a method in which the successive integrals of boundary error functions are equated to zero. Numerical results are presented which bring out the effects of the rectangular geometry and the orthotropic property of the plate. The present solutions are the first step towards the development of special finite elements for fastener joints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Joints are primary sources of weakness in structures. Pin joints are very common and are used where periodic disassembly of components is needed. A circular pin in a circular hole in an infinitely large plate is an abstraction of such a pin joint. A two-dimensional plane-stress analysis of such a configuration is carried out, here, subjected to pin-bearing and/or biaxial-plate loading. The pin is assumed to be rigid compared to the plate material. For pin load the reactive stresses at the edges of the infinite plate tend to zero though their integral over the external boundary equals to the pin load. The pin-hole interface is unbonded and so beyond some load levels the plate separates from the pin and the extent of separation is a non-linear function of load level. The problem is solved by inverse technique where the extent of contact is specified and the causative loads are evaluated directly. In the situations where combined load is acting the separation-contact zone specification generally needs two parameters (angles) to be specified. The present report deals with analysing such a situation in metallic (or isotropic) plates. Numerical results are provided for parametric representation and the methodology is demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pin-loaded holes commonly occur in engineering structures. However, accurate analysis of such holes presents formidable difficulties because of the load-dependent contact of the pin with the plate. Significant progress has recently been achieved in the analysis of holes in isotropic plates. This paper develops a simple and accurate method for the partial contact analysis of pin-loaded holes in composites. The method is based on an inverse formulation that seeks to determine loads in a given contact-separation configuration. A unified approach for all types of fit was used. Continuum solutions were obtained for infinitely large plates of various typical orthotropic properties with holes loaded by smooth rigid pins. These solutions were then compared with those for isotropic plates. The effects of orthotropy and the type of fit were studied through load-contact relationships, distribution of stresses and displacements, and their variation with load. The results are of direct relevance to the analysis and design of pin joints in composite plates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of misfit (interference or clearance) pin in a large orthotropic plate was solved earlier by the authors for biaxial loading in the principal directions of orthotropy. Here, a more general case of arbitrarily oriented loading is considered. The most important aspect of the problem studied is the partial contact at the pin-hole interface. The solution is obtained by extending the use of ‘inverse technique’ which was successfully applied earlier by the authors to problems of pins in isotropic and orthotropic domains. The loss of symmetry because of the arbitrary orientation of loading makes the problem more complex. Additional parameters are then involved in the inversion of the problem for the solution. Numerical results are presented primarily for a smooth interference fit pin in a typical orthotropic plate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modified DLTS technique is proposed for the direct measurement of capture cross-section of MOS surface states. The nature of temperature and energy dependence σn is inferred from data analysis. Temperature dependence of σn is shown to be consistent with the observed DLTS line shapes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, sliding experiments were conducted using pure magnesium pins against steel plates using an inclined pin-on-plate sliding tester. The inclination angle of the plate was varied in the tests and for each inclination angle, the pins were slid both perpendicular and parallel to the unidirectional grinding marks direction under both dry and lubricated conditions. SEM was used to study morphology of the transfer layer formed on the plates. Surface roughness of plates was measured using an optical profilometer. Results showed that the friction, amplitude of stick-slip motion and transfer layer formation significantly depend on both inclination angle and grinding marks direction of the plates. These variations could be attributed to the changes in the level of plowing friction taking place at the asperity level during sliding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The plane problem of load transfer from an elastic interference or clearance fit pin to a large elastic sheet with a perfectly smooth interface is solved. As the load on the pin is monotonically increased, the pin-hole interface is in partial contact above certain critical load in interference fit and throughout the loading range in clearance fit.Such situations result in mixed boundary-value problems with moving boundaries and the arc of contact varies nonlinearly with applied load. These problems are analyzed by an inverse technique in which the arcs of contact/separation are prescribed and the causative loads are evaluated. A direct method of analysis is adopted using biharmonic polar trigonometric stress functions and a simple collocation method for satisfying the boundary conditions. A unified analytical formulation is achieved for interference and clearance fits. The solutions for the linear problem of push fits are inherent in the unified analysis. Numerical results highlighting the effects of pin and sheet elasticity parameters are presented.