117 resultados para PHOTODISSOCIATION
Resumo:
Photodissociation dynamics Of C2H5SH, i-C-3-H7SH and n-C3H7SH at 243.1 nm were investigated using velocity map ion-imaging method. H-atom photolysis products were detected by a (2 + 1) resonance enhanced ionization scheme. Both the angular distribution and translational energy distribution of the H-atom elimination processes were determined from the ion images of the H-atom products. The experimental results indicate that the H-atom eliminations from these molecules are mainly direct and fast dissociation processes from a repulsive potential energy state. And a more statistical dissociation process that likely occurs oil the ground state via internal conversion has also been observed. Dissociation energies of the S-H bonds are also derived from the H-atom product translational energy distributions. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The photodissociation of CH2BrCH2Cl at 266 nm has been investigated on the universal crossed molecular beam machine. The primary dissociation step leads exclusively to the formation of CH2CH2Cl radicals and Br atoms in the electronic ground state as well as in the spin-orbit excited state, with a branching ratio 2 +/- 1:8 +/- 1. Photofragment total c.m. translational energy distribution P(E-t) has been obtained and about 64% of the available energy is partitioned into translational energy for Br channel and about 28.5% of the available energy is partitioned into translational energy for Br* channel. The anisotropy parameters are determined to be beta(Br*) = 0.8 +/- 0.2 and beta(Br) = -0.6 +/- 0.2, respectively. Some CH2CH2Cl radicals with large internal excitation (corresponding to formation of ground state Br channel) may undergo secondary dissociation to form CH2CH2 +/- Cl. The experimental results are discussed in terms of a model that involves the initial excitation of two repulsive electronic states: one from an parallel transition to the (3)Q(0) state, and the other from a perpendicular transition to the (3)Q(1), (1)Q states. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
The photodissociation of C6H5Br at 266 nm has been investigated on the universal crossed molecular beam machine, and time-of-flight spectra as well as the angular distribution of Br atom have been measured. Photofragment translational energy distribution P(E-t) reveals that about 47% of the available energy is partitioned into translational energy. The anisotropy parameter beta at this wavelength is -0.7+/-0.2. From P(E-t) and beta, we deduce that C6H5Br photodissociation is a fast process and the transition dipole moment is almost perpendicular to the C-Br bond. Ab initio calculations have been performed, and the calculated results show that the geometry of the first excited state of bromobenzene has changed apparently compared with that of the ground state. Two kinds of possible fast dissociation mechanism have also been proposed. (C) 1999 American Institute of Physics. [S0021-9606(99)01206-4].
Resumo:
The photodissociation of o-bromotoluene at 266 nm has been investigated using the universal crossed laser-molecular beam technique. The angle-resolved time-of-flight (TOF) spectra corresponding to Br photofragment are measured at different lab angles. The observed translational energy distribution and anisotropy parameters of the Br photofragment indicate that o-bromotoluene dissociates via two channels. In the first channel, the anisotropy parameter beta is determined to be 0.5 +/- 0.2 and the average translational energy is only 9% of the available energy. In the other photofragmentation channel, beta is determined to be - 0.4 +/- 0.2 and 44% of the available energy is assigned to translational energy. Possible mechanisms are discussed. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
The photodissociation o-dichlorobenzene at 266 nm has been investigated using the universal crossed molecular beam technique. Photofragment translational energy distribution P(E-t) and angular distribution of photofragments have been obtained and it is estimated that 23% of the available energy is assigned to translational energy. The anisotropy parameter is determined to be 0.4. From P(E-t) and beta we deduce that o-C6H4Cl2 photodissociation is a slow process. Ab initio calculation has been performed and it shows that the parent molecule has a larger geometry deformation in its excited states comparing with that of the ground state. The possible dissociation mechanism has also been proposed. (C) 1999 Elsevier Science B.V. All rights reserved.