998 resultados para PHASE-LAG
Resumo:
Nuestro cerebro contiene cerca de 1014 sinapsis neuronales. Esta enorme cantidad de conexiones proporciona un entorno ideal donde distintos grupos de neuronas se sincronizan transitoriamente para provocar la aparición de funciones cognitivas, como la percepción, el aprendizaje o el pensamiento. Comprender la organización de esta compleja red cerebral en base a datos neurofisiológicos, representa uno de los desafíos más importantes y emocionantes en el campo de la neurociencia. Se han propuesto recientemente varias medidas para evaluar cómo se comunican las diferentes partes del cerebro a diversas escalas (células individuales, columnas corticales, o áreas cerebrales). Podemos clasificarlos, según su simetría, en dos grupos: por una parte, la medidas simétricas, como la correlación, la coherencia o la sincronización de fase, que evalúan la conectividad funcional (FC); mientras que las medidas asimétricas, como la causalidad de Granger o transferencia de entropía, son capaces de detectar la dirección de la interacción, lo que denominamos conectividad efectiva (EC). En la neurociencia moderna ha aumentado el interés por el estudio de las redes funcionales cerebrales, en gran medida debido a la aparición de estos nuevos algoritmos que permiten analizar la interdependencia entre señales temporales, además de la emergente teoría de redes complejas y la introducción de técnicas novedosas, como la magnetoencefalografía (MEG), para registrar datos neurofisiológicos con gran resolución. Sin embargo, nos hallamos ante un campo novedoso que presenta aun varias cuestiones metodológicas sin resolver, algunas de las cuales trataran de abordarse en esta tesis. En primer lugar, el creciente número de aproximaciones para determinar la existencia de FC/EC entre dos o más señales temporales, junto con la complejidad matemática de las herramientas de análisis, hacen deseable organizarlas todas en un paquete software intuitivo y fácil de usar. Aquí presento HERMES (http://hermes.ctb.upm.es), una toolbox en MatlabR, diseñada precisamente con este fin. Creo que esta herramienta será de gran ayuda para todos aquellos investigadores que trabajen en el campo emergente del análisis de conectividad cerebral y supondrá un gran valor para la comunidad científica. La segunda cuestión practica que se aborda es el estudio de la sensibilidad a las fuentes cerebrales profundas a través de dos tipos de sensores MEG: gradiómetros planares y magnetómetros, esta aproximación además se combina con un enfoque metodológico, utilizando dos índices de sincronización de fase: phase locking value (PLV) y phase lag index (PLI), este ultimo menos sensible a efecto la conducción volumen. Por lo tanto, se compara su comportamiento al estudiar las redes cerebrales, obteniendo que magnetómetros y PLV presentan, respectivamente, redes más densamente conectadas que gradiómetros planares y PLI, por los valores artificiales que crea el problema de la conducción de volumen. Sin embargo, cuando se trata de caracterizar redes epilépticas, el PLV ofrece mejores resultados, debido a la gran dispersión de las redes obtenidas con PLI. El análisis de redes complejas ha proporcionado nuevos conceptos que mejoran caracterización de la interacción de sistemas dinámicos. Se considera que una red está compuesta por nodos, que simbolizan sistemas, cuyas interacciones se representan por enlaces, y su comportamiento y topología puede caracterizarse por un elevado número de medidas. Existe evidencia teórica y empírica de que muchas de ellas están fuertemente correlacionadas entre sí. Por lo tanto, se ha conseguido seleccionar un pequeño grupo que caracteriza eficazmente estas redes, y condensa la información redundante. Para el análisis de redes funcionales, la selección de un umbral adecuado para decidir si un determinado valor de conectividad de la matriz de FC es significativo y debe ser incluido para un análisis posterior, se convierte en un paso crucial. En esta tesis, se han obtenido resultados más precisos al utilizar un test de subrogadas, basado en los datos, para evaluar individualmente cada uno de los enlaces, que al establecer a priori un umbral fijo para la densidad de conexiones. Finalmente, todas estas cuestiones se han aplicado al estudio de la epilepsia, caso práctico en el que se analizan las redes funcionales MEG, en estado de reposo, de dos grupos de pacientes epilépticos (generalizada idiopática y focal frontal) en comparación con sujetos control sanos. La epilepsia es uno de los trastornos neurológicos más comunes, con más de 55 millones de afectados en el mundo. Esta enfermedad se caracteriza por la predisposición a generar ataques epilépticos de actividad neuronal anormal y excesiva o bien síncrona, y por tanto, es el escenario perfecto para este tipo de análisis al tiempo que presenta un gran interés tanto desde el punto de vista clínico como de investigación. Los resultados manifiestan alteraciones especificas en la conectividad y un cambio en la topología de las redes en cerebros epilépticos, desplazando la importancia del ‘foco’ a la ‘red’, enfoque que va adquiriendo relevancia en las investigaciones recientes sobre epilepsia. ABSTRACT There are about 1014 neuronal synapses in the human brain. This huge number of connections provides the substrate for neuronal ensembles to become transiently synchronized, producing the emergence of cognitive functions such as perception, learning or thinking. Understanding the complex brain network organization on the basis of neuroimaging data represents one of the most important and exciting challenges for systems neuroscience. Several measures have been recently proposed to evaluate at various scales (single cells, cortical columns, or brain areas) how the different parts of the brain communicate. We can classify them, according to their symmetry, into two groups: symmetric measures, such as correlation, coherence or phase synchronization indexes, evaluate functional connectivity (FC); and on the other hand, the asymmetric ones, such as Granger causality or transfer entropy, are able to detect effective connectivity (EC) revealing the direction of the interaction. In modern neurosciences, the interest in functional brain networks has increased strongly with the onset of new algorithms to study interdependence between time series, the advent of modern complex network theory and the introduction of powerful techniques to record neurophysiological data, such as magnetoencephalography (MEG). However, when analyzing neurophysiological data with this approach several questions arise. In this thesis, I intend to tackle some of the practical open problems in the field. First of all, the increase in the number of time series analysis algorithms to study brain FC/EC, along with their mathematical complexity, creates the necessity of arranging them into a single, unified toolbox that allow neuroscientists, neurophysiologists and researchers from related fields to easily access and make use of them. I developed such a toolbox for this aim, it is named HERMES (http://hermes.ctb.upm.es), and encompasses several of the most common indexes for the assessment of FC and EC running for MatlabR environment. I believe that this toolbox will be very helpful to all the researchers working in the emerging field of brain connectivity analysis and will entail a great value for the scientific community. The second important practical issue tackled in this thesis is the evaluation of the sensitivity to deep brain sources of two different MEG sensors: planar gradiometers and magnetometers, in combination with the related methodological approach, using two phase synchronization indexes: phase locking value (PLV) y phase lag index (PLI), the latter one being less sensitive to volume conduction effect. Thus, I compared their performance when studying brain networks, obtaining that magnetometer sensors and PLV presented higher artificial values as compared with planar gradiometers and PLI respectively. However, when it came to characterize epileptic networks it was the PLV which gives better results, as PLI FC networks where very sparse. Complex network analysis has provided new concepts which improved characterization of interacting dynamical systems. With this background, networks could be considered composed of nodes, symbolizing systems, whose interactions with each other are represented by edges. A growing number of network measures is been applied in network analysis. However, there is theoretical and empirical evidence that many of these indexes are strongly correlated with each other. Therefore, in this thesis I reduced them to a small set, which could more efficiently characterize networks. Within this framework, selecting an appropriate threshold to decide whether a certain connectivity value of the FC matrix is significant and should be included in the network analysis becomes a crucial step, in this thesis, I used the surrogate data tests to make an individual data-driven evaluation of each of the edges significance and confirmed more accurate results than when just setting to a fixed value the density of connections. All these methodologies were applied to the study of epilepsy, analysing resting state MEG functional networks, in two groups of epileptic patients (generalized and focal epilepsy) that were compared to matching control subjects. Epilepsy is one of the most common neurological disorders, with more than 55 million people affected worldwide, characterized by its predisposition to generate epileptic seizures of abnormal excessive or synchronous neuronal activity, and thus, this scenario and analysis, present a great interest from both the clinical and the research perspective. Results revealed specific disruptions in connectivity and network topology and evidenced that networks’ topology is changed in epileptic brains, supporting the shift from ‘focus’ to ‘networks’ which is gaining importance in modern epilepsy research.
Resumo:
Crowd induced dynamic loading in large structures, such as gymnasiums or stadium, is usually modelled as a series of harmonic loads which are defined in terms of their Fourier coefficients. Different values of these coefficients that were obtained from full scale measurements can be found in codes. Recently, an alternative has been proposed, based on random generation of load time histories that take into account phase lag among individuals inside the crowd. This paper presents the testing done on a structure designed to be a gymnasium. Two series of dynamic test were performed on the gym slab. For the first test an electrodynamic shaker was placed at several locations and during the second one people located inside a marked area bounced and jumped guided by different metronome rates. A finite element model (FEM) is presented and a comparison of numerically predicted and experimentally observed vibration modes and frequencies has been used to assess its validity. The second group of measurements will be compared with predictions made using the FEM model and three alternatives for crowd induced load modelling.
Resumo:
The proportion of elderly people in the population has increased rapidly in the last century and consequently "healthy aging" is expected to become a critical area of research in neuroscience. Evidence reveals how healthy aging depends on three main behavioral factors: social lifestyle, cognitive activity and physical activity. In this study, we focused on the role of cognitive activity, concentrating specifically on educational and occupational attainment factors, which were considered two of the main pillars of cognitive reserve. 21 subjects with similar rates of social lifestyle, physical and cognitive activity were selected from a sample of 55 healthy adults. These subjects were divided into two groups according to their level of cognitive reserve; one group comprised subjects with high cognitive reserve (9 members) and the other contained those with low cognitive reserve (12 members). To evaluate the cortical brain connectivity network, all participants were recorded by Magnetoencephalography (MEG) while they performed a memory task (modified version of the Sternberg¿s Task). We then applied two algorithms (Phase Locking Value & Phase-Lag Index) to study the dynamics of functional connectivity. In response to the same task, the subjects with lower cognitive reserve presented higher functional connectivity than those with higher cognitive reserve. These results may indicate that participants with low cognitive reserve needed a greater 'effort' than those with high cognitive reserve to achieve the same level of cognitive performance. Therefore, we conclude that cognitive reserve contributes to the modulation of the functional connectivity patterns of the aging brain.
Resumo:
En 1966, D. B. Leeson publicó el artículo titulado “A simple model of feedback oscillator noise spectrum” en el que, mediante una ecuación obtenida de forma heurística y basada en parámetros conocidos de los osciladores, proponía un modelo para estimar el espectro de potencia que cuantifica el Ruido de Fase de estos osciladores. Este Ruido de Fase pone de manifiesto las fluctuaciones aleatorias que se producen en la fase de la señal de salida de cualquier oscilador de frecuencia f_0. Desde entonces, los adelantos tecnológicos han permitido grandes progresos en cuanto a la medida del Ruido de Fase, llegando a encontrar una estrecha “zona plana”, alrededor de f_0, conocida con el nombre de Ensanchamiento de Línea (EL) que Leeson no llegó a observar y que su modelo empírico no recogía. Paralelamente han ido surgiendo teorías que han tratado de explicar el Ruido de Fase con mayor o menor éxito. En esta Tesis se propone una nueva teoría para explicar el espectro de potencia del Ruido de Fase de un oscilador realimentado y basado en resonador L-C (Inductancia-Capacidad). Al igual que otras teorías, la nuestra también relaciona el Ruido de Fase del oscilador con el ruido térmico del circuito que lo implementa pero, a diferencia de aquellas, nuestra teoría se basa en un Modelo Complejo de ruido eléctrico que considera tanto las Fluctuaciones de energía eléctrica asociadas a la susceptancia capacitiva del resonador como las Disipaciones de energía eléctrica asociadas a su inevitable conductancia G=1⁄R, que dan cuenta del contacto térmico entre el resonador y el entorno térmico que le rodea. En concreto, la nueva teoría que proponemos explica tanto la parte del espectro del Ruido de Fase centrada alrededor de la frecuencia portadora f_0 que hemos llamado EL y su posterior caída proporcional a 〖∆f〗^(-2) al alejarnos de f_0, como la zona plana o pedestal que aparece en el espectro de Ruido de Fase lejos de esa f_0. Además, al saber cuantificar el EL y su origen, podemos explicar con facilidad la aparición de zonas del espectro de Ruido de Fase con caída 〖∆f〗^(-3) cercanas a la portadora y que provienen del denominado “exceso de ruido 1⁄f” de dispositivos de Estado Sólido y del ruido “flicker” de espectro 1⁄f^β (0,8≤β≤1,2) que aparece en dispositivos de vacío como las válvulas termoiónicas. Habiendo mostrado que una parte del Ruido de Fase de osciladores L-C realimentados que hemos denominado Ruido de Fase Térmico, se debe al ruido eléctrico de origen térmico de la electrónica que forma ese oscilador, proponemos en esta Tesis una nueva fuente de Ruido de Fase que hemos llamado Ruido de Fase Técnico, que se añadirá al Térmico y que aparecerá cuando el desfase del lazo a la frecuencia de resonancia f_0 del resonador no sea 0° o múltiplo entero de 360° (Condición Barkhausen de Fase, CBF). En estos casos, la modulación aleatoria de ganancia de lazo que realiza el Control Automático de Amplitud en su lucha contra ruidos que traten de variar la amplitud de la señal oscilante del lazo, producirá a su vez una modulación aleatoria de la frecuencia de tal señal que se observará como más Ruido de Fase añadido al Térmico. Para dar una prueba empírica sobre la existencia de esta nueva fuente de Ruido de Fase, se diseñó y construyó un oscilador en torno a un resonador mecánico “grande” para tener un Ruido de Fase Térmico despreciable a efectos prácticos. En este oscilador se midió su Ruido de Fase Técnico tanto en función del valor del desfase añadido al lazo de realimentación para apartarlo de su CBF, como en función de la perturbación de amplitud inyectada para mostrar sin ambigüedad la aparición de este Ruido de Fase Técnico cuando el lazo tiene este fallo técnico: que no cumple la Condición Barkhausen de Fase a la frecuencia de resonancia f_0 del resonador, por lo que oscila a otra frecuencia. ABSTRACT In 1966, D. B. Leeson published the article titled “A simple model of feedback oscillator noise spectrum” in which, by means of an equation obtained heuristically and based on known parameters of the oscillators, a model was proposed to estimate the power spectrum that quantifies the Phase Noise of these oscillators. This Phase Noise reveals the random fluctuations that are produced in the phase of the output signal from any oscillator of frequencyf_0. Since then, technological advances have allowed significant progress regarding the measurement of Phase Noise. This way, the narrow flat region that has been found around f_(0 ), is known as Line Widening (LW). This region that Leeson could not detect at that time does not appear in his empirical model. After Leeson’s work, different theories have appeared trying to explain the Phase Noise of oscillators. This Thesis proposes a new theory that explains the Phase Noise power spectrum of a feedback oscillator around a resonator L-C (Inductance-Capacity). Like other theories, ours also relates the oscillator Phase Noise to the thermal noise of the feedback circuitry, but departing from them, our theory uses a new, Complex Model for electrical noise that considers both Fluctuations of electrical energy associated with the capacitive susceptance of the resonator and Dissipations of electrical energy associated with its unavoidable conductance G=1/R, which accounts for the thermal contact between the resonator and its surrounding environment (thermal bath). More specifically, the new theory we propose explains both the Phase Noise region of the spectrum centered at the carrier frequency f_0 that we have called LW and shows a region falling as 〖∆f〗^(-2) as we depart from f_0, and the flat zone or pedestal that appears in the Phase Noise spectrum far from f_0. Being able to quantify the LW and its origin, we can easily explain the appearance of Phase Noise spectrum zones with 〖∆f〗^(-3) slope near the carrier that come from the so called “1/f excess noise” in Solid-State devices and “flicker noise” with 1⁄f^β (0,8≤β≤1,2) spectrum that appears in vacuum devices such as thermoionic valves. Having shown that the part of the Phase Noise of L-C oscillators that we have called Thermal Phase Noise is due to the electrical noise of the electronics used in the oscillator, this Thesis can propose a new source of Phase Noise that we have called Technical Phase Noise, which will appear when the loop phase shift to the resonance frequency f_0 is not 0° or an integer multiple of 360° (Barkhausen Phase Condition, BPC). This Phase Noise that will add to the Thermal one, comes from the random modulation of the loop gain carried out by the Amplitude Automatic Control fighting against noises trying to change the amplitude of the oscillating signal in the loop. In this case, the BPC failure gives rise to a random modulation of the frequency of the output signal that will be observed as more Phase Noise added to the Thermal one. To give an empirical proof on the existence of this new source of Phase Noise, an oscillator was designed and constructed around a “big” mechanical resonator whose Thermal Phase Noise is negligible for practical effects. The Technical Phase Noise of this oscillator has been measured with regard to the phase lag added to the feedback loop to separate it from its BPC, and with regard to the amplitude disturbance injected to show without ambiguity the appearance of this Technical Phase Noise that appears when the loop has this technical failure: that it does not fulfill the Barkhausen Phase Condition at f_0, the resonance frequency of the resonator and therefore it is oscillating at a frequency other than f_0.
Resumo:
O hidrogênio (H2) tem sido considerado uma fonte de energia limpa bastante promissora, pois sua combustão origina apenas moléculas de água, sendo uma alternativa ao uso de combustíveis fósseis. Entretanto, os métodos atuais de produção de H2 demandam matérias-primas finitas e uma grande quantidade de energia, tornando a sua obtenção não sustentável. Mais recentemente, a via fermentativa tem sido considerada para a produção de H2, utilizando como matérias-primas efluentes industriais, materiais lignocelulósicos e biomassa de algas, denominado de bio-hidrogênio de primeira, segunda e terceira geração, respectivamente. Neste trabalho foi isolada uma bactéria anaeróbia a partir de uma cultura mista (lodo) de um sistema de tratamento de vinhaça, após pré-tratamento do lodo a pH 3 por 12 horas. Este microrganismo foi identificado com 99% de similaridade como Clostridium beijerinckii com base na sequência do gene RNAr 16S denominado de C. beijerinckii Br21. A temperatura e o pH mais adequados para o crescimento e produção de H2 por esta cultura foi 35 °C e pH inicial 7,0. A bactéria possui a capacidade de utilizar ampla variedade de fontes de carbono para a produção de H2 por fermentação, especialmente, monossacarídeos resultantes da hidrólise de biomassa de algas, tais como glicose, galactose e manose. Foram realizados ensaios em batelada para a produção de H2 com a bactéria isolada empregando diferentes concentrações de glicose e galactose, visando a sua futura utilização em hidrolisados de alga. Os parâmetros cinéticos dos ensaios de fermentação estimados pelo modelo de Gompertz modificado, como a velocidade máxima de produção (Rm), a quantidade máxima de hidrogênio produzido (Hmáx) e o tempo necessário para o início da produção de hidrogênio (fase lag) para a glicose (15 g/L) foram de: 58,27 mL de H2/h, 57,68 mmol de H2 e 8,29 h, respectivamente. Para a galactose (15 g/L), a Rm, Hmáx e foram de 67,64 mL de H2/h, 47,61 mmol de H2 e 17,22 horas, respectivamente. O principal metabólito detectado ao final dos ensaios de fermentação, foi o ácido butírico, seguido pelo ácido acético e o etanol, tanto para os ensaios com glicose, como com galactose. C. beijerinckii é um candidato bastante promissor para a produção de H2 por fermentação a partir de glicose e galactose e, consequentemente, a partir de biomassa de algas como substratos.
Resumo:
A Hamamatsu Video Area Analyser has been coupled with a modified Canon IR automatic optometer. This has allowed simultaneous recording of pupil diameter and accommodation response to be made both statically and continuously, a feature not common in previous studies. Experimental work concerned pupil and accommodation responses during near vision tasks under a variety of conditions. The effects of sustained near vision tasks on accommodation have usually been demonstrated by taking post-task measures under darkroom conditions. The possibility of similar effects on pupil diameter was assessed using static and continuous recordings following a near vision task. Results showed that is luminance levels remained unchanged by using a pre-and post-task bright-empty field then, although accommodation regressed to pre-task levels,pupil diameter remained for several minutes at the contstricted level induced by the task. An investigation into the effect of a sinusoidally-modulated blur-only accommodative stimulus on pupil response demonstrated that response may be reduced or absent despite robust accommodation responses. This suggests that blur-driven acommodation alone may not be sufficient to produce a pupil near response and that the presence of other cues may be necessary. Pupil response was investigated using a looming stimulus which produced an inferred-proximity cue. It was found that a pupil response could be induced which was in synchrony with the stimulus while closed-loop accommodation response was kept constant by the constraints of optical blur. The pupil diameter of young and elderly subjects undertaking a 5 minute reading task was measured to assess the contribution of pupil constriction to near vision function in terms of depth-of-focus. Results showed that in the young subjects pupil diameter was too large to have a significant effect on depth-of-focus although it may be increased in the elderly subjects. Pupil and accommodation reponses to a temporally-modulated stimulus containing all cues present in a normal visual environment was assessed and results showed that as stimulus temporal frequency increased, pupil response showed increasing phase lag relative to closed-loop accommodation. The results of this study suggest that it may be necessary to change the accepted view of the function of pupil response as part of the near vision triad and that further study would be of benefit in particular to designers of vision aids such as, for example, bifocal contact lenses.
Resumo:
High-resolution pollen and dinoflagellate cyst records from sediment core M72/5-25-GC1 were used to reconstruct vegetation dynamics in northern Anatolia and surface conditions of the Black Sea between 64 and 20 ka BP. During this period, the dominance of Artemisia in the pollen record indicates a steppe landscape and arid climate conditions. However, the concomitant presence of temperate arboreal pollen suggests the existence of glacial refugia in northern Anatolia. Long-term glacial vegetation dynamics reveal two major arid phases ~64-55 and 40-32 ka BP, and two major humid phases ~54-45 and 28-20 ka BP, correlating with higher and lower summer insolation, respectively. Dansgaard-Oeschger (D-O) cycles are clearly indicated by the 25-GC1 pollen record. Greenland interstadials are characterized by a marked increase in temperate tree pollen, indicating a spread of forests due to warm/wet conditions in northern Anatolia, whereas Greenland stadials reveal cold and arid conditions as indicated by spread of xerophytic biomes. There is evidence for a phase lag of ~500 to 1500 yr between initial warming and forest expansion, possibly due to successive changes in atmospheric circulation in the North Atlantic sector. The dominance of Pyxidinopsis psilata and Spiniferites cruciformis in the dinocyst record indicates brackish Black Sea conditions during the entire glacial period. The decrease of marine indicators (marine dinocysts, acritarchs) at ~54 ka BP and increase of freshwater algae (Pediastrum, Botryococcus) from 32 to 25 ka BP reveals freshening of the Black Sea surface water. This freshening is possibly related to humid phases in the region, to connection between Caspian Sea and Black Sea, to seasonal freshening by floating ice, and/or to closer position of river mouths due to low sea level. In the southern Black Sea, Greenland interstadials are clearly indicated by high dinocyst concentrations and calcium carbonate content, as a result of an increase in primary productivity. Heinrich events show a similar impact on the environment in the northern Anatolia/Black Sea region as Greenland stadials.
Resumo:
Submarine slope stability has become an important concern and a subject of research with increasing demand for offshore developments and technological advancement for harsh and challenging environments. The consequences of submarine slope failure adjacent to oil and gas facilities would have a large financial, safety and regulatory impact. This current research work investigates potential failure of submarine gassy slopes triggered by tidal variations. Due to tidal variations, failure of an unsaturated slope may occur under specific combinations of increasing degree of saturation and soil permeability, and decreasing tidal period. Novel physical model tests in a geotechnical centrifuge were undertaken to examine submarine slope failure mechanisms containing gassy sediments. The model preparation techniques, measurement systems and results are presented. The response observed in the model test is discussed and further developments proposed. The buried PPT’s response of the submarine slope are comparable in terms of attenuation and phase lag with Nagaswaran (1983) and with field measurements of Atigh and Byrne (2004) in terms of phase lag.
Resumo:
Hybrid simulation is a technique that combines experimental and numerical testing and has been used for the last decades in the fields of aerospace, civil and mechanical engineering. During this time, most of the research has focused on developing algorithms and the necessary technology, including but not limited to, error minimisation techniques, phase lag compensation and faster hydraulic cylinders. However, one of the main shortcomings in hybrid simulation that has pre- vented its widespread use is the size of the numerical models and the effect that higher frequencies may have on the stability and accuracy of the simulation. The first chapter in this document provides an overview of the hybrid simulation method and the different hybrid simulation schemes, and the corresponding time integration algorithms, that are more commonly used in this field. The scope of this thesis is presented in more detail in chapter 2: a substructure algorithm, the Substep Force Feedback (Subfeed), is adapted in order to fulfil the necessary requirements in terms of speed. The effects of more complex models on the Subfeed are also studied in detail, and the improvements made are validated experimentally. Chapters 3 and 4 detail the methodologies that have been used in order to accomplish the objectives mentioned in the previous lines, listing the different cases of study and detailing the hardware and software used to experimentally validate them. The third chapter contains a brief introduction to a project, the DFG Subshake, whose data have been used as a starting point for the developments that are shown later in this thesis. The results obtained are presented in chapters 5 and 6, with the first of them focusing on purely numerical simulations while the second of them is more oriented towards a more practical application including experimental real-time hybrid simulation tests with large numerical models. Following the discussion of the developments in this thesis is a list of hardware and software requirements that have to be met in order to apply the methods described in this document, and they can be found in chapter 7. The last chapter, chapter 8, of this thesis focuses on conclusions and achievements extracted from the results, namely: the adaptation of the hybrid simulation algorithm Subfeed to be used in conjunction with large numerical models, the study of the effect of high frequencies on the substructure algorithm and experimental real-time hybrid simulation tests with vibrating subsystems using large numerical models and shake tables. A brief discussion of possible future research activities can be found in the concluding chapter.
Resumo:
Due to trends in aero-design, aeroelasticity becomes increasingly important in modern turbomachines. Design requirements of turbomachines lead to the development of high aspect ratio blades and blade integral disc designs (blisks), which are especially prone to complex modes of vibration. Therefore, experimental investigations yielding high quality data are required for improving the understanding of aeroelastic effects in turbomachines. One possibility to achieve high quality data is to excite and measure blade vibrations in turbomachines. The major requirement for blade excitation and blade vibration measurements is to minimize interference with the aeroelastic effects to be investigated. Thus in this paper, a non-contact-and thus low interference-experimental set-up for exciting and measuring blade vibrations is proposed and shown to work. A novel acoustic system excites rotor blade vibrations, which are measured with an optical tip-timing system. By performing measurements in an axial compressor, the potential of the acoustic excitation method for investigating aeroelastic effects is explored. The basic principle of this method is described and proven through the analysis of blade responses at different acoustic excitation frequencies and at different rotational speeds. To verify the accuracy of the tip-timing system, amplitudes measured by tip-timing are compared with strain gage measurements. They are found to agree well. Two approaches to vary the nodal diameter (ND) of the excited vibration mode by controlling the acoustic excitation are presented. By combining the different excitable acoustic modes with a phase-lag control, each ND of the investigated 30 blade rotor can be excited individually. This feature of the present acoustic excitation system is of great benefit to aeroelastic investigations and represents one of the main advantages over other excitation methods proposed in the past. In future studies, the acoustic excitation method will be used to investigate aeroelastic effects in high-speed turbomachines in detail. The results of these investigations are to be used to improve the aeroelastic design of modern turbomachines.
Resumo:
Serotypes of Streptococcus pneumoniae differ in colonization prevalence and the likelihood of causing disease. In vitro growth in brain heart infusion broth with or without 5% fetal calf serum (FCS) was compared for 47 clinical isolates representing 15 pneumococcal serotypes. Serotype-specific colonization prevalence and odds ratios for the invasive potential were obtained from an international and a local epidemiological study. The duration of the lag phase increased with the invasiveness and was inversely associated with the colonization prevalence of a serotype. Supplementation with FCS shortened the lag phase preferentially in serotypes associated with invasive disease (P=0.007). Reduction of oxidative stress by addition of manganese (Mn(2+)), Tiron, mannitol or catalase did not influence the duration of the lag phase significantly. Serotype specific invasiveness and colonization prevalence of S. pneumoniae are associated with the length of the lag phase during in vitro growth. This may correlate with serotype specific selection in vivo.
Resumo:
This study investigated the influence of interpersonal coordination tendencies on performance outcomes of 1-vs-1 subphases in youth soccer. Eight male developing soccer players (age: 11.8+0.4 years; training experience: 3.6+1.1 years) performed an in situ simulation of a 1-vs-1 sub-phase of soccer. Data from 82 trials were obtained with motion-analysis techniques, and relative phase used to measure the space-time coordination tendencies of attacker-defender dyads. Approximate entropy (ApEn) was then used to quantify the unpredictability of interpersonal interactions over trials. Results revealed how different modes of interpersonal coordination emerging from attacker-defender dyads influenced the 1-vs-1 performance outcomes. High levels of space-time synchronisation (47%) and unpredictability in interpersonal coordination processes (ApEn: 0.91+0.34) were identified as key features of an attacking player’s success. A lead-lag relation attributed to a defending player (34% around 7308 values) and a more predictable coordination mode (ApEn: 0.65+0.27, P50.001), demonstrated the coordination tendencies underlying the success of defending players in 1-vs-1 sub-phases. These findings revealed how the mutual influence of each player on the behaviour of dyadic systems shaped emergent performance outcomes. More specifically, the findings showed that attacking players should be constrained to exploit the space-time synchrony with defenders in an unpredictable and creative way, while defenders should be encouraged to adopt postures and behaviours that actively constrain the attacker’s actions.
Resumo:
A new solution for unbalanced and nonlinear loads in terms of power circuit topology and controller structure is proposed in this paper. A three-phase four-wire high-frequency ac-link inverter is adopted to cater to such loads. Use of high-frequency transformer results in compact and light-weight systems. The fourth wire is taken out from the midpoint of the isolation transformer in order to avoid the necessity of an extra leg. This makes the converter suitable for unbalanced loads and eliminates the requirements of bulky capacitor in half-bridge inverter. The closed-loop control is carried out in stationary reference frame using proportional + multiresonant controller (three separate resonant controller for fundamental, fifth and seventh harmonic components). The limitations on improving steady-state response of harmonic resonance controllers is investigated and mitigated using a lead-lag compensator. The proposed voltage controller is used along with an inner current loop to ensure excellent performance of the power converter. Simulation studies and experimental results with 1 kVA prototype under nonlinear and unbalanced loading conditions validate the proposed scheme.
Resumo:
To examine the immediate phase-shifting effects of high-intensity exercise of a practical duration (1 h) on human circadian phase, five groups of healthy men 20-30 yr of age participated in studies involving no exercise or exposure to morning, afternoon, evening, or nocturnal exercise. Except during scheduled sleep/dark and exercise periods, subjects remained under modified constant routine conditions allowing a sleep period and including constant posture, knowledge of clock time, and exposure to dim light intensities averaging (±SD) 42 ± 19 lx. The nocturnal onset of plasma melatonin secretion was used as a marker of circadian phase. A phase response curve was used to summarize the phase-shifting effects of exercise as a function of the timing of exercise. A significant effect of time of day on circadian phase shifts was observed (P < 0.004). Over the interval from the melatonin onset before exercise to the first onset after exercise, circadian phase was significantly advanced in the evening exercise group by 30 ± 15 min (SE) compared with the phase delays observed in the no-exercise group (-25 ± 14 min, P < 0.05). Phase shifts in response to evening exercise exposure were attenuated on the second day after exercise exposure and no longer significantly different from phase shifts observed in the absence of exercise. Unanticipated transient elevations of melatonin levels were observed in response to nocturnal exercise and in some evening exercise subjects. Taken together with the results from previous studies in humans and diurnal rodents, the current results suggest that 1) a longer duration of exercise exposure and/or repeated daily exposure to exercise may be necessary for reliable phase-shifting of the human circadian system and that 2) early evening exercise of high intensity may induce phase advances relevant for nonphotic entrainment of the human circadian system.
Resumo:
The authors studied pattern stability and error correction during in-phase and antiphase 4-ball fountain juggling. To obtain ball trajectories, they made and digitized high-speed film recordings of 4 highly skilled participants juggling at 3 different heights (and thus different frequencies). From those ball trajectories, the authors determined and analyzed critical events (i.e., toss, zenith, catch, and toss onset) in terms of variability of point estimates of relative phase and temporal correlations. Contrary to common findings on basic instances of rhythmic interlimb coordination, in-phase and antiphase patterns were equally variable (i.e., stable). Consistent with previous findings, however, pattern stability decreased with increasing frequency. In contrast to previous results for 3-ball cascade juggling, negative lag-one correlations for catch-catch intervals were absent, but the authors obtained evidence for error corrections between catches and toss onsets. That finding may have reflected participants' high skill level, which yielded smaller errors that allowed for corrections later in the hand cycle.