964 resultados para PHASE MORPHOLOGY ANALYSIS
Resumo:
Primary voice production occurs in the larynx through vibrational movements carried out by vocal folds. However, many problems can affect this complex system resulting in voice disorders. In this context, time-frequency-shape analysis based on embedding phase space plots and nonlinear dynamics methods have been used to evaluate the vocal fold dynamics during phonation. For this purpose, the present work used high-speed video to record the vocal fold movements of three subjects and extract the glottal area time series using an image segmentation algorithm. This signal is used for an optimization method which combines genetic algorithms and a quasi-Newton method to optimize the parameters of a biomechanical model of vocal folds based on lumped elements (masses, springs and dampers). After optimization, this model is capable of simulating the dynamics of recorded vocal folds and their glottal pulse. Bifurcation diagrams and phase space analysis were used to evaluate the behavior of this deterministic system in different circumstances. The results showed that this methodology can be used to extract some physiological parameters of vocal folds and reproduce some complex behaviors of these structures contributing to the scientific and clinical evaluation of voice production. (C) 2010 Elsevier Inc. All rights reserved.
A Phase Space Box-counting based Method for Arrhythmia Prediction from Electrocardiogram Time Series
Resumo:
Arrhythmia is one kind of cardiovascular diseases that give rise to the number of deaths and potentially yields immedicable danger. Arrhythmia is a life threatening condition originating from disorganized propagation of electrical signals in heart resulting in desynchronization among different chambers of the heart. Fundamentally, the synchronization process means that the phase relationship of electrical activities between the chambers remains coherent, maintaining a constant phase difference over time. If desynchronization occurs due to arrhythmia, the coherent phase relationship breaks down resulting in chaotic rhythm affecting the regular pumping mechanism of heart. This phenomenon was explored by using the phase space reconstruction technique which is a standard analysis technique of time series data generated from nonlinear dynamical system. In this project a novel index is presented for predicting the onset of ventricular arrhythmias. Analysis of continuously captured long-term ECG data recordings was conducted up to the onset of arrhythmia by the phase space reconstruction method, obtaining 2-dimensional images, analysed by the box counting method. The method was tested using the ECG data set of three different kinds including normal (NR), Ventricular Tachycardia (VT), Ventricular Fibrillation (VF), extracted from the Physionet ECG database. Statistical measures like mean (μ), standard deviation (σ) and coefficient of variation (σ/μ) for the box-counting in phase space diagrams are derived for a sliding window of 10 beats of ECG signal. From the results of these statistical analyses, a threshold was derived as an upper bound of Coefficient of Variation (CV) for box-counting of ECG phase portraits which is capable of reliably predicting the impeding arrhythmia long before its actual occurrence. As future work of research, it was planned to validate this prediction tool over a wider population of patients affected by different kind of arrhythmia, like atrial fibrillation, bundle and brunch block, and set different thresholds for them, in order to confirm its clinical applicability.
Resumo:
This paper provides some results on the potential to minimize environmental impacts in residential buildings life cycle, through façade design strategies, analyzing also their impact on costs from a lifecycle perspective. On one hand, it assesses the environmental damage produced by the materials of the building envelope, and on the other, the benefits they offer in terms of habitability and liveability in the use phase. The analysis includes several design parameters used both for rehabilitation of existing facades, as for new facades, trying to cover various determinants and proposing project alternatives. With this study we intended to contribute to address the energy challenges for the coming years, trying also to propose pathways for innovative solutions for the building envelope.
Resumo:
This work reports the first instance of self-organized thermoset blends containing diblock copolymers with a crystallizable thermoset-immiscible block. Nanostructured thermoset blends of bisphenol A-type epoxy resin (ER) and a low-molecular-weight (M-n = 1400) amphiphilic polyethylene-block-poly(ethylene oxide) (EEO) symmetric diblock copolymer were prepared using 4,4'-methylenedianiline (MDA) as curing agent and were characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), small-angle X-ray scattering (SAXS), and differential scanning calorimetry (DSC). All the MDA-cured ER/EEO blends do not show macroscopic phase separation but exhibit microstructures. The ER selectively mixes with the epoxy-miscible PEO block in the EEO diblock copolymer whereas the crystallizable PE blocks that are immiscible with ER form separate microdomains at nanoscales in the blends. The PE crystals with size on nanoscales are formed and restricted within the individual spherical micelles in the nanostructured ER/EEO blends with EEO content up to 30 wt %. The spherical micelles are highly aggregated in the blends containing 40 and 50 wt % EEO. The PE dentritic crystallites exist in the blend containing 50 wt % EEO whereas the blends with even higher EEO content are completely volume-filled with PE spherulites. The semicrystalline microphase-separated lamellae in the symmetric EEO diblock copolymer are swollen in the blend with decreasing EEO content, followed by a structural transition to aggregated spherical micellar phase morphology and, eventually, spherical micellar phase morphology at the lowest EEO contents. Three morphological regimes are identified, corresponding precisely to the three regimes of crystallization kinetics of the PE blocks. The nanoscale confinement effect on the crystallization kinetics in nanostructured thermoset blends is revealed for the first time. This new phenomenon is explained on the basis of homogeneous nucleation controlled crystallization within nanoscale confined environments in the block copolymer/thermoset blends.
Resumo:
Listeria monocytogenes is a food-borne Gram-positive bacterium that is responsible for a variety of infections (worldwide) annually. The organism is able to survive a variety of environmental conditions and stresses, however, the mechanisms by which L. monocytogenes adapts to environmental change are yet to be fully elucidated. An understanding of the mechanism(s) by which L. monocytogenes survives unfavourable environmental conditions will aid in developing new food processing methods to control the organism in foodstuffs. We have utilized a proteomic approach to investigate the response of L. monocytogenes batch cultures to the transition from exponential to stationary growth phase. Proteomic analysis showed that batch cultures of L. monocytogenes perceived stress and began preparations for stationary phase much earlier (approximately A(600) = 0.75, mid-exponential) than predicted by growth characteristics alone. Global analysis of the proteome revealed that the expression levels of more than 50% of all proteins observed changed significantly over a 7-9 h period during this transition phase. We have highlighted ten proteins in particular whose expression levels appear to be important in the early onset of the stationary phase. The significance of these findings in terms of functionality and the mechanistic picture are discussed.
Resumo:
A re-examination of fundamental concepts and a formal structuring of the waveform analysis problem is presented in Part I. eg. the nature of frequency is examined and a novel alternative to the classical methods of detection proposed and implemented which has the advantage of speed and independence from amplitude. Waveform analysis provides the link between Parts I and II. Part II is devoted to Human Factors and the Adaptive Task Technique. The Historical, Technical and Intellectual development of the technique is traced in a review which examines the evidence of its advantages relative to non-adaptive fixed task methods of training, skill assessment and man-machine optimisation. A second review examines research evidence on the effect of vibration on manual control ability. Findings are presented in terms of percentage increment or decrement in performance relative to performance without vibration in the range 0-0.6Rms'g'. Primary task performance was found to vary by as much as 90% between tasks at the same Rms'g'. Differences in task difficulty accounted for this difference. Within tasks vibration-added-difficulty accounted for the effects of vibration intensity. Secondary tasks were found to be largely insensitive to vibration except secondaries which involved fine manual adjustment of minor controls. Three experiments are reported next in which an adaptive technique was used to measure the % task difficulty added by vertical random and sinusoidal vibration to a 'Critical Compensatory Tracking task. At vibration intensities between 0 - 0.09 Rms 'g' it was found that random vibration added (24.5 x Rms'g')/7.4 x 100% to the difficulty of the control task. An equivalence relationship between Random and Sinusoidal vibration effects was established based upon added task difficulty. Waveform Analyses which were applied to the experimental data served to validate Phase Plane analysis and uncovered the development of a control and possibly a vibration isolation strategy. The submission ends with an appraisal of subjects mentioned in the thesis title.
Resumo:
This dissertation research points out major challenging problems with current Knowledge Organization (KO) systems, such as subject gateways or web directories: (1) the current systems use traditional knowledge organization systems based on controlled vocabulary which is not very well suited to web resources, and (2) information is organized by professionals not by users, which means it does not reflect intuitively and instantaneously expressed users’ current needs. In order to explore users’ needs, I examined social tags which are user-generated uncontrolled vocabulary. As investment in professionally-developed subject gateways and web directories diminishes (support for both BUBL and Intute, examined in this study, is being discontinued), understanding characteristics of social tagging becomes even more critical. Several researchers have discussed social tagging behavior and its usefulness for classification or retrieval; however, further research is needed to qualitatively and quantitatively investigate social tagging in order to verify its quality and benefit. This research particularly examined the indexing consistency of social tagging in comparison to professional indexing to examine the quality and efficacy of tagging. The data analysis was divided into three phases: analysis of indexing consistency, analysis of tagging effectiveness, and analysis of tag attributes. Most indexing consistency studies have been conducted with a small number of professional indexers, and they tended to exclude users. Furthermore, the studies mainly have focused on physical library collections. This dissertation research bridged these gaps by (1) extending the scope of resources to various web documents indexed by users and (2) employing the Information Retrieval (IR) Vector Space Model (VSM) - based indexing consistency method since it is suitable for dealing with a large number of indexers. As a second phase, an analysis of tagging effectiveness with tagging exhaustivity and tag specificity was conducted to ameliorate the drawbacks of consistency analysis based on only the quantitative measures of vocabulary matching. Finally, to investigate tagging pattern and behaviors, a content analysis on tag attributes was conducted based on the FRBR model. The findings revealed that there was greater consistency over all subjects among taggers compared to that for two groups of professionals. The analysis of tagging exhaustivity and tag specificity in relation to tagging effectiveness was conducted to ameliorate difficulties associated with limitations in the analysis of indexing consistency based on only the quantitative measures of vocabulary matching. Examination of exhaustivity and specificity of social tags provided insights into particular characteristics of tagging behavior and its variation across subjects. To further investigate the quality of tags, a Latent Semantic Analysis (LSA) was conducted to determine to what extent tags are conceptually related to professionals’ keywords and it was found that tags of higher specificity tended to have a higher semantic relatedness to professionals’ keywords. This leads to the conclusion that the term’s power as a differentiator is related to its semantic relatedness to documents. The findings on tag attributes identified the important bibliographic attributes of tags beyond describing subjects or topics of a document. The findings also showed that tags have essential attributes matching those defined in FRBR. Furthermore, in terms of specific subject areas, the findings originally identified that taggers exhibited different tagging behaviors representing distinctive features and tendencies on web documents characterizing digital heterogeneous media resources. These results have led to the conclusion that there should be an increased awareness of diverse user needs by subject in order to improve metadata in practical applications. This dissertation research is the first necessary step to utilize social tagging in digital information organization by verifying the quality and efficacy of social tagging. This dissertation research combined both quantitative (statistics) and qualitative (content analysis using FRBR) approaches to vocabulary analysis of tags which provided a more complete examination of the quality of tags. Through the detailed analysis of tag properties undertaken in this dissertation, we have a clearer understanding of the extent to which social tagging can be used to replace (and in some cases to improve upon) professional indexing.
Resumo:
Among the options for plastics modification more convenient, both from a technical-scientific and economic, is the development of polymer blends by processing in the molten state. This work was divide into two stages, with the aim to study the phase morphology of binary blend PMMA / PET blend and this compatibilized by the addition of the poly(methyl methacrylate-co-glycidyl methacrylate-co-ethyl acrylate) copolymer (MMA-GMA-EA). In the first stage is analyzed the morphology of the blend at a preliminary stage where we used the bottle-grade PET in a Haake torque rheometer and the effect of compatibilizer in this blend was evaluated. In the second stage the blend was processed using the recycled PET in a single screw extruder and subsequently injection molding in the shape of specimens for mechanical tests. In both stages we used a transmission electron microscopy (TEM) to observe the morphologies of the samples and an image analyzer to characterize them. In the second stage, as well as analysis by TEM, tensile test, scanning electron microscopy (SEM) and atomic force microscopy (AFM) was performed to correlate the morphology with the mechanical properties. The samples used in morphological analyzes were sliced by cryo-ultramicrotomy technique for the analysis by TEM and the analysis by SEM and AFM, we used the flat face of the block after cut cryogenic. It was found that the size of the dispersed phase decreased with the addition of MMA-GMA-EA in blends prepared in a Haake. In the tensile test, the values of maximum tensile strength and modulus of elasticity is maintained in a range between the value of pure PMMA the pure PET, while the elongation at break was influenced by the composition by weight of the PMMA mixture. The coupling agent corroborated the results presented in the blend PMMA / PETrec / MMA-GMA-EA (80/15/5 %w/w), obtained by TEM, AFM and SEM. It was concluded that the techniques used had a good morphologic correlation, and can be confirmed for final analysis of the morphological characteristics of the blends PMMA / PET
Resumo:
Universidade Estadual de Campinas. Faculdade de Educação Física
Resumo:
Context. There is growing evidence that a treatment of binarity amongst OB stars is essential for a full theory of stellar evolution. However the binary properties of massive stars - frequency, mass ratio & orbital separation - are still poorly constrained. Aims. In order to address this shortcoming we have undertaken a multiepoch spectroscopic study of the stellar population of the young massive cluster Westerlund 1. In this paper we present an investigation into the nature of the dusty Wolf-Rayet star and candidate binary W239. Methods. To accomplish this we have utilised our spectroscopic data in conjunction with multi-year optical and near-IR photometric observations in order to search for binary signatures. Comparison of these data to synthetic non-LTE model atmosphere spectra were used to derive the fundamental properties of the WC9 primary. Results. We found W239 to have an orbital period of only similar to 5.05 days, making it one of the most compact WC binaries yet identified. Analysis of the long term near-IR lightcurve reveals a significant flare between 2004-6. We interpret this as evidence for a third massive stellar component in the system in a long period (> 6 yr), eccentric orbit, with dust production occuring at periastron leading to the flare. The presence of a near-IR excess characteristic of hot (similar to 1300 K) dust at every epoch is consistent with the expectation that the subset of persistent dust forming WC stars are short (< 1 yr) period binaries, although confirmation will require further observations. Non-LTE model atmosphere analysis of the spectrum reveals the physical properties of the WC9 component to be fully consistent with other Galactic examples. Conclusions. The simultaneous presence of both short period Wolf-Rayet binaries and cool hypergiants within Wd 1 provides compelling evidence for a bifurcation in the post-Main Sequence evolution of massive stars due to binarity. Short period O+OB binaries will evolve directly to the Wolf-Rayet phase, either due to an episode of binary mediated mass loss - likely via case A mass transfer or a contact configuration - or via chemically homogenous evolution. Conversely, long period binaries and single stars will instead undergo a red loop across the HR diagram via a cool hypergiant phase. Future analysis of the full spectroscopic dataset for Wd 1 will constrain the proportion of massive stars experiencing each pathway; hence quantifying the importance of binarity in massive stellar evolution up to and beyond supernova and the resultant production of relativistic remnants.
Resumo:
This study aimed to evaluate the efficiency of simultaneous selection (selection indices) using estimated genetic gains in yellow passion fruit and to make a comparison between the methodologies of Mulamba & Mock and Elston. The study was conducted with 26 sib progenies of yellow passion fruit for intrinsic production characteristics including fruit number, fruit mass, fruit length and diameter, and for the fruit characteristics skin thickness, soluble solids and acidity. Two methodologies were applied: first, in the joint analysis of fruit characteristics and of intrinsic production characteristics in a single phase of selection; and second, in the analysis in two phases, in which priority was given to the intrinsic production characteristics in the first phase, and later, in the second phase, the best fruit characteristics were chosen among the progenies of the first phase. The analysis of variance was applied to the data to detect genetic variability among progenies. The Elston's selection indice was unable to provide distribution of genetic gains consistent with the purposes of the study, as it selected a single progeny of passion fruit. However, the index based on the sum of ranks of Mulamba & Mock was more suitable, as it provided a balanced distribution of gains, selecting a larger number of progenies. The methodology of selection using indices is advantageous in passion fruit, since it contributes to higher genetic gains for all the traits evaluated, and the selection in a single phase was proved efficient for progeny selection.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
Relatório do Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações
Resumo:
Purpose - The education and training of a nuclear medicine technologist (NMT) is not homogeneous among European countries, which leads to different scope of practices and, therefore, different technical skills are assigned. The goal of this research was to characterize the education and training of NMT in Europe. Materials and methods - This study was based on a literature research to characterize the education and training of NMT and support the historical evolution of this profession. It was divided into two different phases: the first phase included analysis of scientific articles and the second phase included research of curricula that allow health professionals to work as NMT in Europe. Results - The majority of the countries [N=31 (89%)] offer the NMT curriculum integrated into the high education system and only in four (11%) countries the education is provided by professional schools. The duration in each education system is not equal, varying in professional schools (2-3 years) and high education level system (2-4 years), which means that different European Credit Transfer and Accumulation System, such as 240, 230, 222, 210 or 180 European Credit Transfer and Accumulation System, are attributed to the graduates. The professional title and scope of the practice of NMT are different in different countries in Europe. In most countries of Europe, nuclear medicine training is not specific and curriculum does not demonstrate the Nuclear Medicine competencies performed in clinical practice. Conclusion - The heterogeneity in education and training for NMT is an issue prevalent among European countries. For NMT professional development, there is a huge need to formalize and unify educational and training programmes in Europe.
Resumo:
O principal motivo para a realização deste trabalho consistiu no desenvolvimento de tecnologia robótica, que permitisse o mergulho e ascenção de grandes profundidades de uma forma eficiente. O trabalho realizado contemplou uma fase inicial de análise e estudo dos sistemas robóticos existentes no mercado, bem como métodos utilizados identificando vantagens e desvantagens em relação ao tipo de veículo pretendido. Seguiu-se uma fase de projeto e estudo mecânico, com o intuito de desenvolver um veículo com variação de lastro através do bombeamento de óleo para um reservatório exterior, para variar o volume total do veículo, variando assim a sua flutuabilidade. Para operar a grande profundidade com AUV’s é conveniente poder efetuar o trajeto up/down de forma eficiente e a variação de lastro apresenta vantagens nesse aspeto. No entanto, contrariamente aos gliders o interesse está na possibilidade de subir e descer na vertical. Para controlar a flutuabilidade e ao mesmo tempo analisar a profundidade do veículo em tempo real, foi necessario o uso de um sistema de processamento central que adquirisse a informação do sensor de pressão e comunicasse com o sistema de variação de lastro, de modo a fazer o controlo de posicionamento vertical desejado. Do ponto de vista tecnológico procurou-se desenvolver e avaliar soluções de variação de volume intermédias entre as dos gliders (poucas gramas) e as dos ROV’s workclass (dezenas ou centenas de kilogramas). Posteriormente, foi desenvolvido um simulador em matlab (Simulink) que reflete o comportamento da descida do veículo, permitindo alterar parâmetros do veículo e analisar os seus resultados práticos, de modo a poder ajustar o veículo real. Nos resultados simulados verificamos o cálculo das velocidades limite atingidas pelo veículo com diferentes coeficientes de atrito, bem como o comportamento da variação de lastro do veículo no seu deslocamento vertical. Sistema de Variação de Lastro para Controlo de Movimento Vertical de Veículo Subaquático Por fim, verificou-se ainda a capacidade de controlo do veículo para uma determinada profundiade, e foi feita a comparação entre estas simulações executadas com parâmetros muito próximos do ensaio real e os respetivos ensaios reais.