993 resultados para PHAGE DISPLAY LIBRARY


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to produce phage display-derived binders with the ability to distinguish Listeria monocytogenes from other Listeria spp., which may have potential utility to enhance detection of Listeria monocytogenes. To obtain binders with the desired binding specificity a series of surface and solution phage-display biopannings were performed. Initially, three rounds of surface biopanning against gamma-irradiated L. monocytogenes serovar 4b cells were performed followed by an additional surface biopanning round against L. monocytogenes 4b which included prior subtraction biopanning against gamma-irradiated L. innocua cells. In an attempt to further enhance binder specificity for L. monocytogenes 4b two rounds of solution biopanning were performed, both rounds included initial subtraction solution biopanning against L. innocua. Subsequent evaluations were performed on the phage clones by phage binding ELISA. All phage clones tested from the second round of solution biopanning had higher specificity for L. monocytogenes 4b than for L. innocua and three other foodborne pathogens (Salmonella spp., Escherichia coli and Campylobacter jejuni). Further evaluation with five other Listeria spp. revealed that one phage clone in particular, expressing peptide GRIADLPPLKPN, was highly specific for L. monocytogenes with at least 43-fold more binding capability to L. monocytogenes 4b than to any other Listeria sp. This proof-of-principle study demonstrates how a combination of surface, solution and subtractive biopanning was used to maximise binder specificity. L. monocytogenes-specific binders were obtained which could have potential application in novel detection tests for L. monocytogenes, benefiting both the food and medical industries. © 2013 Morton et al.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Medicina Veterinária - FMVZ

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Catalytic antibodies have shown great promise for catalyzing a tremendously diverse set of natural and unnatural chemical transformations. However, few catalytic antibodies have efficiencies that approach those of natural enzymes. In principle, random mutagenesis procedures such as phage display could be used to improve the catalytic activities of existing antibodies; however, these studies have been hampered by difficulties in the recombinant expression of antibodies. Here, we have grafted the antigen binding loops from a murine-derived catalytic antibody, 17E8, onto a human antibody framework in an effort to overcome difficulties associated with recombinant expression and phage display of this antibody. “Humanized” 17E8 retained similar catalytic and hapten binding properties as the murine antibody while levels of functional Fab displayed on phage were 200-fold higher than for a murine variable region/human constant region chimeric Fab. This construct was used to prepare combinatorial libraries. Affinity panning of these resulted in the selection of variants with 2- to 8-fold improvements in binding affinity for a phosphonate transition-state analog. Surprisingly, none of the affinity-matured variants was more catalytically active than the parent antibody and some were significantly less active. By contrast, a weaker binding variant was identified with 2-fold greater catalytic activity and incorporation of a single substitution (Tyr-100aH → Asn) from this variant into the parent antibody led to a 5-fold increase in catalytic efficiency. Thus, phage display methods can be readily used to optimize binding of catalytic antibodies to transition-state analogs, and when used in conjunction with limited screening for catalysis can identify variants with higher catalytic efficiencies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gene VII protein (pVII) and gene IX protein (pIX) are associated closely on the surface of filamentous bacteriophage that is opposite of the end harboring the widely exploited pIII protein. We developed a phagemid format wherein antibody heavy- and light-chain variable regions were fused to the amino termini of pVII and pIX, respectively. Significantly, the fusion proteins interacted to form a functional Fv-binding domain on the phage surface. Our approach will be applicable to the display of generic peptide and protein libraries that can form combinatorial heterodimeric arrays. Consequently, it represents a first step toward artificial antibodies and the selection of novel biological activities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A large library of phage-displayed human single-chain Fv antibodies (scFv), containing 6.7 × 109 members, was generated by improving the steps of library construction. Fourteen different protein antigens were used to affinity select antibodies from this library. A panel of specific antibodies was isolated with each antigen, and each panel contained an average of 8.7 different scFv. Measurements of antibody–antigen interactions revealed several affinities below 1 nM, comparable to affinities observed during the secondary murine immune response. In particular, four different scFv recognizing the ErbB2 protein had affinities ranging from 220 pM to 4 nM. Antibodies derived from the library proved to be useful reagents for immunoassays. For example, antibodies generated to the Chlamydia trachomatis elementary bodies stained Chlamydia-infected cells, but not uninfected cells. These results demonstrate that phage antibody libraries are ideally suited for the rapid production of panels of high-affinity mAbs to a wide variety of protein antigens. Such libraries should prove especially useful for generating reagents to study the function of gene products identified by genome projects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure of the small hepatitis B virus surface antigen (HBsAg) was investigated by epitope mapping of four anti-HBsAg monoclonal antibodies (mAbs). Amino acid sequences of epitopes were derived from affinity-enrichment experiments (biopanning) using a filamentous phage peptide library. The library consists of 10(9) different clones bearing a 30-residue peptide fused to gene III. Sequence homologies between peptides obtained from panning the library against the antibodies and the native HBsAg sequence allowed for precise description of the binding regions. Three of four mAbs were found to bind to distinct discontinuous epitopes between amino acid residues 101 and 207 of HBsAg. The fourth mAb was demonstrated to bind to residues 121-124. The sequence data are supported by ELISA assays demonstrating the binding of the HBsAg-specific peptides on filamentous phage to mAbs. The sequence data were used to map the surface of HBsAg and to derive a topological model for the alpha-carbon trace of the 101-207 region of HBsAg. The approach should be useful for other proteins for which the crystal structure is not available but a representative set of mAbs can be obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Src homology 3 (SH3) domain is a 50-aa modular unit present in many cellular proteins involved in intracellular signal transduction. It functions to direct protein-protein interactions through the recognition of proline-rich motifs on associated proteins. SH3 domains are important regulatory elements that have been demonstrated to specify distinct regulatory pathways important for cell growth, migration, differentiation, and responses to the external milieu. By the use of synthetic peptides, ligands have been shown to consist of a minimum core sequence and to bind to SH3 domains in one of two pseudosymmetrical orientations, class I and class II. The class I sites have the consensus sequence ZP(L/P)PP psi P whereas the class II consensus is PP psi PPZ (where psi is a hydrophobic residue and Z is a SH3 domain-specific residue). We previously showed by M13 phage display that the Src, Fyn, Lyn, and phosphatidylinositol 3-kinase (PI3K) SH3 domains preferred the same class I-type core binding sequence, RPLPP psi P. These results failed to explain the specificity for cellular proteins displayed by SH3 domains in cells. In the current study, class I and class II core ligand sequences were displayed on the surface of bacteriophage M13 with five random residues placed either N- or C-terminal of core ligand residues. These libraries were screened for binding to the Src, Fyn, Lyn, Yes, and PI3K SH3 domains. By this approach, additional ligand residue preferences were identified that can increase the affinity of SH3 peptide ligands at least 20-fold compared with core peptides. The amino acids selected in the flanking sequences were similar for Src, Fyn, and Yes SH3 domains; however, Lyn and PI3K SH3 domains showed distinct binding specificities. These results indicate that residues that flank the core binding sequences shared by many SH3 domains are important determinants of SH3 binding affinity and selectivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human monoclonal antibodies have considerable potential in the prophylaxis and treatment of viral disease. However, only a few such antibodies suitable for clinical use have been produced to date. We have previously shown that large panels of human recombinant monoclonal antibodies against a plethora of infectious agents, including herpes simplex virus types 1 and 2, can be established from phage display libraries. Here we demonstrate that facile cloning of recombinant Fab fragments against specific viral proteins in their native conformation can be accomplished by panning phage display libraries against viral glycoproteins "captured" from infected cell extracts by specific monoclonal antibodies immobilized on ELISA plates. We have tested this strategy by isolating six neutralizing recombinant antibodies specific for herpes simplex glycoprotein gD or gB, some of which are against conformationally sensitive epitopes. By using defined monoclonal antibodies for the antigen-capture step, this method can be used for the isolation of antibodies to specific regions and epitopes within the target viral protein. For instance, monoclonal antibodies to a nonneutralizing epitope can be used in the capture step to clone antibodies to neutralizing epitopes, or antibodies to a neutralizing epitope can be used to clone antibodies to a different neutralizing epitope. Furthermore, by using capturing antibodies to more immunodominant epitopes, one can direct the cloning to less immunogenic ones. This method should be of value in generating antibodies to be used both in the prophylaxis and treatment of viral infections and in the characterization of the mechanisms of antibody protective actions at the molecular level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

B7-H4 (VTCN1, B7x, B7s) is an inhibitory modulator of T-cell response implicated in antigen tolerization. As such, B7-H4 is an immune checkpoint of potential therapeutic interest. To generate anti-B7-H4 targeting reagents, we isolated antibodies by differential cell screening of a yeast-display library of recombinant antibodies (scFvs) derived from ovarian cancer patients and we screened for functional scFvs capable to interfere with B7-H4-mediated inhibition of antitumor responses. We found one antibody binding to B7-H4 that could restore antitumor T cell responses. This chapter gives an overview of the methods we developed to isolate a functional anti-B7-H4 antibody fragment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cette thèse présente la découverte de nouveaux inhibiteurs de l’amidotransférase ARNt-dépendante (AdT), et résume les connaissances récentes sur la biosynthèse du Gln-ARNtGln et de l’Asn-ARNtAsn par la voie indirecte chez la bactérie Helicobacter pylori. Dans le cytoplasme des eucaryotes, vingt acides aminés sont liés à leur ARNt correspondant par vingt aminoacyl-ARNt synthétases (aaRSs). Ces enzymes sont très spécifiques, et leur fonction est importante pour le décodage correct du code génétique. Cependant, la plupart des bactéries, dont H. pylori, sont dépourvues d’asparaginyl-ARNt synthétase et/ou de glutaminyl-ARNt synthétase. Pour former le Gln-ARNtGln, H. pylori utilise une GluRS noncanonique nommée GluRS2 qui glutamyle spécifiquement l’ARNtGln ; ensuite, une AdT trimérique, la GatCAB corrige le Glu-ARNtGln mésapparié en le transamidant pour former le Gln-ARNtGln, qui lira correctement les codons glutamine pendant la biosynthèse des protéines sur les ribosomes. La formation de l’Asn-ARNtAsn est similaire à celle du Gln-ARNtGln, et utilise la même GatCAB et une AspRS non-discriminatrice. Depuis des années 2000, la GatCAB est considérée comme une cible prometteuse pour le développement de nouveaux antibiotiques, puisqu’elle est absente du cytoplasme de l’être humain, et qu’elle est encodée dans le génome de plusieurs bactéries pathogènes. Dans le chapitre 3, nous présentons la découverte par la technique du « phage display » de peptides cycliques riches en tryptophane et en proline, et qui inhibent l’activité de la GatCAB de H. pylori. Les peptides P10 (CMPVWKPDC) et P9 (CSAHNWPNC) inhibent cette enzyme de façon compétitive par rapport au substrat Glu-ARNtGln. Leur constante d’inhibition (Ki) est 126 μM pour P10, et 392 μM pour P9. Des modèles moléculaires ont montré qu’ils lient le site actif de la réaction de transmidation catalysée par la GatCAB, grâce à la formation d’une interaction π-π entre le résidu Trp de ces peptides et le résidu Tyr81 de la sous-unité GatB, comme fait le A76 3’-terminal de l’ARNt. Dans une autre étude concernant des petits composés contenant un groupe sulfone, et qui mimiquent l’intermédiaire de la réaction de transamidation, nous avons identifié des composés qui inhibent la GatCAB de H. pylori de façon compétitive par rapport au substrat Glu-ARNtGln. Cinq fois plus petits que les peptides cycliques mentionnés plus haut, ces composés inhibent l’activité de la GatCAB avec des Ki de 139 μM pour le composé 7, et de 214 μM pour le composé 4. Ces inhibiteurs de GatCAB pourraient être utiles pour des études mécanistiques, et pourraient être des molécules de base pour le développement de nouvelles classes d’antibiotiques contre des infections causées par H. pylori.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The importance of RNA as a mediator of genetic information is widely appreciated. RNA molecules also participate in the regulation of various post-transcriptional activities, such as mRNA splicing, editing, RNA stability and transport. Their regulatory roles for these activities are highly dependent on finely tuned associations with cognate proteins. The RNA recognition motif (RRM) is an ancient RNA binding module that participates in hundreds of essential activities where specific RNA recognition is required. We have applied phage display and site-directed mutagenesis to dissect principles of RRM-controlled RNA recognition. The model systems we are investigating are U1A and CUG-BP1. In this dissertation, the molecular basis of the binding affinity of U1A-RNA beyond individual contacts was investigated. We have identified and evaluated the contributions of the local cooperativity formed by three neighboring residues (Asn15, Asn16 and Glu19) to the stability of the U1A-RNA complex. The localized cooperative network was mapped by double-mutant cycles and explored using phage display. We also showed that a cluster of these residues forms a “hot spot” on the surface of U1A; a single substitution at position 19 with Gln or His can alter the binding properties of U1A to recognize a non-cognate G4U RNA. Finally, we applied a deletion analysis of CUG-BP1 to define the contributions of individual RRMs and RRM combinations to the stability of the complex formed between CUG-BP1 and the GRE sequence. The preliminary results showed RRM3 of CUG-BP1 is a key domain for RNA binding. It possibly binds to the GRE sequence cooperatively with RRM2 of CUG-BP1. RRM1 of CUG-BP1 is not required for GRE recognition, but may be important for maintaining the stability of the full-length CUG-BP1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Guanylyl cyclase C (GCC) is the receptor for the gastrointestinal hormones, guanylin, and uroguanylin, in addition to the bacterial heat-stable enterotoxins, which are one of the major causes of watery diarrhea the world over. GCC is expressed in intestinal cells, colorectal tumor tissue and tumors originating from metastasis of the colorectal carcinoma. We have earlier generated a monoclonal antibody to human GCC, GCC:B10, which was useful for the immunohistochemical localization of the receptor in the rat intestine (Nandi A et al., 1997, J Cell Biochem 66:500-511), and identified its epitope to a 63-amino acid stretch in the intracellular domain of GCC. In view of the potential that this antibody has for the identification of colorectal tumors, we have characterized the epitope for GCC:B10 in this study. Overlapping peptide synthesis indicated that the epitope was contained in the sequence HIPPENIFPLE. This sequence was unique to GCC, and despite a short stretch of homology with serum amyloid protein and pertussis toxin, no cross reactivity was detected. The core epitope was delineated using a random hexameric phage display library, and two categories of sequences were identified, containing either a single, or two adjacent proline residues. No sequence identified by phage display was identical to the epitope present in GCC, indicating that phage sequences represented mimotopes of the native epitope. Alignment of these sequences with HIPPENIFPLE suggested duplication of the recognition motif, which was confirmed by peptide synthesis. These studies allowed us not only to define the requirements of epitope recognition by GCC:B10 monoclonal antibody, but also to describe a novel means of epitope recognition involving topological mimicry and probable duplication of the cognate epitope in the native guanylyl cyclase C receptor sequence.