980 resultados para PEROVSKITE-TYPE OXIDES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel zirconium-based membrane material of BaCo0.4Fe0.4Zr0.2O3-6 with cubic perovskite structure was synthesized for the first time through a method of citric and EDTA acid combined complexes. The structural stability was characterized by XRD, O-2-TPD and H-2-TPR techniques respectively. The high oxygen permeation flux of 0.873 mL/cm(2) min at 950 degreesC was obtained under He/Air gradient. Meanwhile, the single activation energy for oxygen permeation and the long-term steady operation of 200 h at 800 degreesC were achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phase structure and stability of three typical mixed ionic and electronic conducting perovskite-type membranes, SrCo0.8Fe0.2O3-delta (SCF), Ba0.5Sr0.5Co0.8Fe0.2O3-delta (BSCF) and BaCo0.4Fe0.4Zr0.2O3-delta (BCFZ) were studied by in situ high temperature X-ray diffraction at temperatures from 303 to 1273 K and under different atmospheres (air, 2% O-2 in Ar and pure Ar) at 1173 K. By analyzing their lattice parameters the thermal expansion coefficients (TECs) of BSCF, SCF and BCZF are obtained to be 11.5 x 10(-6) K-1, 17.9 x 10(-6) K-1 and 10.3 x 10(-6) K-1, respectively. A relationship between phase stability and TEC was proposed: the higher is the TEC, the lower is the operation stability of the perovskite materials. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gas-to-liquid processes are generally used to convert natural gas or other gaseous hydrocarbons into liquid fuels via an intermediate syngas stream. This includes the production of liquid fuels from biomass-derived sources such as biogas. For example, the dry reforming of methane is done by reacting CH4 and CO2, the two main components of natural biogas, into more valuable products, i.e., CO and H2. Nickel containing perovskite type catalysts can promote this reaction, yielding good conversions and selectivities; however, they are prone to coke laydown under certain operating conditions. We investigated the addition of high oxygen mobility dopants such as CeO2, ZrO2, or YSZ to reduce carbon laydown, particularly using reaction conditions that normally result in rapid coking. While doping with YSZ, YDC, GDC, and SDC did not result in any improvement, we show that a Ni perovskite catalyst (Na0.5La0.5Ni0.3Al0.7O2.5) doped with 80.9 ZrO2 15.2 CeO2 gave the lowest amount of carbon formation at 800 °C and activity was maintained over the operating time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New materials, based on the well-known spinel compound NiMn 2O4, have been synthesized and characterized from the magnetic point of view. The manganese cation was partially substituted in the general formula NiMn2-xMexO4, by nonmagnetic and magnetic elements, such as Me = Ga, Zn, Ni and Cr (0 × 1). Prior to the determination of their magnetic properties, the non-substituted spinel NiMn2O4 was carefully characterized and studied as a function of the oxygen stoichiometry, based on the influence of the annealing atmosphere and quenching rate. The ferrimagnetic character was observed in all samples, with a paramagnetic-to-ferromagnetic transition temperature T c stabilized at 110 K, and well defined long-range antiferromagnetic interactions at lower temperatures, which depend on the applied field and the substitute concentration. © 2006 Sociedad Chilena de Química.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crystallographic and microstructural properties of Ho(Ni,Co,Mn)O3± perovskite-type multiferroic material are reported. Samples were synthesized with a modified polymeric precursor method. The synchrotron X-ray powder diffraction (SXRPD) technique associated to Rietveld refinement method was used to perform structural characterization. The crystallographic structures, as well as microstructural properties, were studied to determine unit cell parameters and volume, angles and atomic positions, crystallite size and strain. X-ray energies below the absorption edges of the transition metals helped to determine the mean preferred atomic occupancy for the substituent atoms. Furthermore, analyzing the degree of distortion of the polyhedra centered at the transitions metal atoms led to understanding the structural model of the synthesized phase. X-ray photoelectron spectroscopy (XPS) was performed to evaluate the valence states of the elements, and the tolerance factor and oxygen content. The obtained results indicated a small decrease distortion in structure, close to the HoMnO3 basis compound. In addition, the substituent atoms showed the same distribution and, on average, preferentially occupied the center of the unit cell.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gas-to-liquid processes are generally used to convert natural gas or other gaseous hydrocarbons into liquid fuels via an intermediate syngas stream. This includes the production of liquid fuels from biomass-derived sources such as biogas. For example, the dry reforming of methane is done by reacting CH4 and CO2, the two main components of natural biogas, into more valuable products, i.e., CO and H2. Nickel containing perovskite type catalysts can promote this reaction, yielding good conversions and selectivities; however, they are prone to coke laydown under certain operating conditions. We investigated the addition of high oxygen mobility dopants such as CeO2, ZrO2, or YSZ to reduce carbon laydown, particularly using reaction conditions that normally result in rapid coking. While doping with YSZ, YDC, GDC, and SDC did not result in any improvement, we show that a Ni perovskite catalyst (Na0.5La0.5Ni0.3Al0.7O2.5) doped with 80.9 ZrO2 15.2 CeO2 gave the lowest amount of carbon formation at 800 °C and activity was maintained over the operating time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

钙钛矿过渡金属氧化物已有大量实验和理论研究。本论文采用一般梯度近似(GGA)和GGA+U(U表示原位的库仑相互作用)下的第一性原理密度函数方法研究了双层,四层和含氧空位的钙钛矿过渡金属氧化物的晶体结构、电子结构以及电、磁性质。 从对双层钙钛矿Sr2FeMoO6和Sr2CoMoO6的研究,我们发现Sr2FeMoO6的四方相比立方相稳定,而且两种结构下它都显半金属特性;对于Sr2CoMoO6,原位的库仑相互作用决定了它的半导体性质。此外,我们还研究了实验上备受争议的Ba2YIrO6和Ba2LaIrO6在立方 Fm-3m, 菱形 R-3和单斜 P21/n三种结构下的相对稳定性。结果表明第一性原理与半经验的键价模型得到的结论相同,即Ba2YIrO6和Ba2LaIrO6的最稳定结构分别是单斜 P21/n和菱形R-3。 不同Mn-O-Mn角度下YBaMn2O5的电子结构和磁结构的计算结果表明,当Mn-O-Mn 角度处于实验所测的157.8o时,G-型反铁磁结构比A-型稳定,与实验结果相符。随着角度的增加,大约在170出现了磁结构转变。当角度大于170时,A型反铁磁结构比G型稳定,即YBaMn2O5从G型过渡到A型。此外,我们还研究了YBaMn2O5在不同磁结构以及不同角度下的导电性。 通过对四层钙钛矿化合物CaCu3M4O12 (M是3d过渡金属离子:Ti, V, Cr, Mn, Fe, Co)的能带结构计算研究了M离子的电子构型对其磁结构和导电性的影响。结果表明随着M电子数的增加,该系列化合物磁结构为:在CaCu3Ti4O12(Ti4+:d0)中Cu-Cu为反铁磁性耦合,即该物质为反铁磁体;在CaCu3M4O12 (M= V4+:d1, Cr4+:d2, Mn4+:d3, Fe4+:d4;dn,0

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work is to study the effect of Sr substitution on the redox properties and catalytic activity of La2-xSrxNiO4 (x = 0.0-1.2) for NO decomposition. Results suggest that the x = 0.6 sample shows the highest activity. The characterization (TPD, TPR, etc.) of samples indicates that the x = 0.6 sample possesses suitable abilities in both oxidation and reduction, which facilitates the proceeding of oxygen desorption and NO adsorption. At temperature below 700 degrees C, the oxygen desorption is difficult, and is the rate-determining step of NO decomposition. With the increase of reaction temperature (T > 700 degrees C), the oxygen desorption is favorable and, the active adsorption of NO on the active site (NO + V-o + Ni2+ -> NO--Ni3+) turns out to be the rate-determining step. The existence of oxygen vacancy is the prerequisite condition for NO decomposition, but its quantity does not relate much to the activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ce and MgO were added simultaneously to La-Sr-Ni-O catalyst and a substantial enhancement of activity for NO decomposition was observed, which may be attributed to the formation of a new highly active site caused by the addition of Ce and MgO.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CH4 and CO oxidation reaction on perovskite-like oxides La2-xSrxMO4 (0.01 <= x <= 1.0; M = Cu, Ni) was investigated from cyclic voltammetry method, finding that for suprafacial CO oxidation reaction, the catalyst activity has a close correlation to the area of redox peaks measured in the cyclic voltammetry, the larger the peak area is, the higher the activity will be, while for interfacial CH4 oxidation reaction, the activity depends mainly on the difference in redox potentials (Delta E), and the smaller the difference in redox potentials is, the higher the activity will be.