939 resultados para PERIPHERAL-BLOOD LYMPHOCYTES
Resumo:
Human T lymphotropic virus type 1 (HTLV-1) -associated myelopathy/tropic spastic paraparesis is a demyelinating inflammatory neurologic disease associated with HTLV-1 infection. HTLV-1 Tax11–19-specific cytotoxic T cells have been isolated from HLA-A2-positive patients. We have used a peptide-loaded soluble HLA-A2–Ig complex to directly visualize HTLV-1 Tax11–19-specific T cells from peripheral blood and cerebrospinal fluid without in vitro stimulation. Five of six HTLV-1-associated myelopathy/tropic spastic paraparesis patients carried a significant number (up to 13.87%) of CD8+ lymphocytes specific for the HTLV-1 Tax11–19 peptide in their peripheral blood, which were not found in healthy controls. Simultaneous comparison of peripheral blood and cerebrospinal fluid from one patient revealed 2.5-fold more Tax11–19-specific T cells in the cerebrospinal fluid (23.7% vs. 9.4% in peripheral blood lymphocyte). Tax11–19-specific T cells were seen consistently over a 9-yr time course in one patient as far as 19 yrs after the onset of clinical symptoms. Further analysis of HTLV-1 Tax11–19-specific CD8+ T lymphocytes in HAM/TSP patients showed different expression patterns of activation markers, intracellular TNF-α and γ-interferon depending on the severity of the disease. Thus, visualization of antigen-specific T cells demonstrates that HTLV-1 Tax11–19-specific CD8+ T cells are activated, persist during the chronic phase of the disease, and accumulate in cerebrospinal fluid, showing their pivotal role in the pathogenesis of this neurologic disease.
Resumo:
We have investigated the ability of human immunodeficiency virus (HIV)-infected cells to kill uninfected CD4+ lymphocytes. Infected peripheral blood mononuclear cells were cocultured with autologous 51Cr-labeled uninfected cells. Rapid death of the normal CD4-expressing target population was observed following a brief incubation. Death of blood CD4+ lymphocytes occurred before syncytium formation could be detected or productive viral infection established in the normal target cells. Cytolysis could not be induced by free virus, was dependent on gp120-CD4 binding, and occurred in resting, as well as activated, lymphocytes. CD8+ cells were not involved in this phenomenon, since HIV-infected CEMT4 cells (CD4+, CD8- cells) mediated the cytolysis of uninfected targets. Reciprocal isotope-labeling experiments demonstrated that infected CEMT4 cells did not die in parallel with their targets. The uninfected target cells manifested DNA fragmentation, followed by the release of the 51Cr label. Thus, in HIV patients, infected lymphocytes may cause the depletion of the much larger population of uninfected CD4+ cells without actually infecting them, by triggering an apoptotic death.
Resumo:
Human immunodeficiency virus (HIV)-specific cytotoxic T lymphocytes (CTLs) are thought to play a major role in the immune response to HIV infection. The HIV-specific CTL response is much stronger than previously documented in an infectious disease, yet estimates of CTL frequency derived from limiting-dilution analysis (LDA) are relatively low and comparable to other viral infections. Here we show that individual CTL clones specific for peptides from HIV gag and pol gene products are present at high levels in the peripheral blood of three infected patients and that individual CTL clones may represent between 0.2% and 1% of T cells. Previous LDA in one donor had shown a frequency of CTL precursors of 1/8000, suggesting that LDA may underestimate CTL effector frequency. In some donors individual CTL clones persisted in vivo for at least 5 years. In contrast, in one patient there was a switch in CTL usage suggesting that different populations of CTLs can be recruited during infection. These data imply strong stimulation of CTLs, potentially leading some clones to exhaustion.
Resumo:
SUMMARY The Porcine Reproductive and Respiratory Syndrome (PRRS) virus is one of the most spread pathogens in swine herds all over the world and responsible for a reproductive and respiratory syndrome that causes severe heath and economical problems. This virus emerged in late 1980’s but although about 30 years have passed by, the knowledge about some essential facets related to the features of the virus (pathogenesis, immune response, and epidemiology) seems to be still incomplete. Taking into account that the development of modern vaccines is based on how innate and acquire immunity react, a more and more thorough knowledge on the immune system is needed, in terms of molecular modulation/regulation of the inflammatory and immune response upon PRRSV infection. The present doctoral thesis, which is divided into 3 different studies, is aimed to increase the knowledge about the interaction between the immune system and the PRRS virus upon natural infection. The objective of the first study entitled “Coordinated immune response of memory and cytotoxic T cells together with IFN-γ secreting cells after porcine reproductive and respiratory syndrome virus (PRRSV) natural infection in conventional pigs” was to evaluate the activation and modulation of the immune response in pigs naturally infected by PRRSV compared to an uninfected control group. The course of viremia was evaluated by PCR, the antibody titres by ELISA, the number of IFN-γ secreting cells (IFN- SC) by an ELISPOT assay and the immunophenotyping of some lymphocyte subsets (cytotoxic cells, memory T lymphocytes and cytotoxic T lymphocytes) by flow cytometry. The results showed that the activation of the cell-mediated immune response against PRRSV is delayed upon infection and that however the levels of IFN-γ SC and lymphocyte subsets subsequently increase over time. Furthermore, it was observed that the course of the different immune cell subsets is time-associated with the levels of PRRSV-specific IFN-γ SC and this can be interpreted based on the functional role that such lymphocyte subsets could have in the specific production/secretion of the immunostimulatory cytokine IFN-γ. In addition, these data support the hypothesis that the age of the animals upon the onset of infection or the diverse immunobiological features of the field isolate, as typically hypothesized during PRRSV infection, are critical conditions able to influence the qualitative and quantitative course of the cell-mediated immune response during PRRSV natural infection. The second study entitled “Immune response to PCV2 vaccination in PRRSV viremic piglets” was aimed to evaluate whether PRRSV could interfere with the activation of the immune response to PCV2 vaccination in pigs. In this trial, 200 pigs were divided into 2 groups: PCV2-vaccinated (at 4 weeks of age) and PCV2-unvaccinated (control group). Some piglets of both groups got infected by PRRSV, as determined by PRRSV viremia detection, so that 4 groups were defined as follows: PCV2 vaccinated - PRRSV viremic PCV2 vaccinated - PRRSV non viremic PCV2 unvaccinated - PRRSV viremic PCV2 unvaccinated - PRRSV non viremic The following parameters were evaluated in the 4 groups: number of PCV2-specific IFN-γ secreting cells, antibody titres by ELISA and IPMA. Based on the immunological data analysis, it can be deduced that: 1) The low levels of antibodies against PCV2 in the PCV2-vaccinated – PRRSV-viremic group at vaccination (4 weeks of age) could be related to a reduced colostrum intake influenced by PRRSV viremia. 2) Independently of the viremia status, serological data of the PCV2-vaccinated group by ELISA and IPMA does not show statistically different differences. Consequently, it can be be stated that, under the conditions of the study, PRRSV does not interfere with the antibody response induced by the PCV2 vaccine. 3) The cell-mediated immune response in terms of number of PCV2-specific IFN-γ secreting cells in the PCV2-vaccinated – PRRSV-viremic group seems to be compromised, as demonstrated by the reduction of the number of IFN-γ secreting cells after PCV2 vaccination, compared to the PCV2-vaccinated – PRRSV-non-viremic group. The data highlight and further support the inhibitory role of PRRSV on the development and activation of the immune response and highlight how a natural infection at early age can negatively influence the immune response to other pathogens/antigens. The third study entitled “Phenotypic modulation of porcine CD14+ monocytes, natural killer/natural killer T cells and CD8αβ+ T cell subsets by an antibody-derived killer peptide (KP)” was aimed to determine whether and how the killer peptide (KP) could modulate the immune response in terms of activation of specific lymphocyte subsets. This is a preliminary approach also aimed to subsequently evaluate such KP with a potential antivural role or as adjuvant. In this work, pig peripheral blood mononuclear cells (PBMC) were stimulated with three KP concentrations (10, 20 and 40 g/ml) for three time points (24, 48 and 72 hours). TIME POINTS (hours) KP CONCENTRATIONS (g/ml) 24 0-10-20-40 48 0-10-20-40 72 0-10-20-40 By using flow cytometry, the qualitative and quantitative modulation of the following immune subsets was evaluated upon KP stimulation: monocytes, natural killer (NK) cells, natural killer T (NKT) cells, and CD4+ and CD8α/β+ T lymphocyte subsets. Based on the data, it can be deduced that: 1) KP promotes a dose-dependent activation of monocytes, particularly after 24 hours of stimulation, by inducing a monocyte phenotypic and maturation shift mainly involved in sustaining the innate/inflammatory response. 2) KP induces a strong dose-dependent modulation of NK and NKT cells, characterized by an intense increase of the NKT cell fraction compared to NK cells, both subsets involved in the antibody-dependent cell cytotoxicity (ADCC). The increase is observed especially after 24 hours of stimulation. 3) KP promotes a significant activation of the cytotoxic T lymphocyte subset (CTL). 4) KP can modulate both the T helper and T cytotoxic phenotype, by inducing T helper cells to acquire the CD8α thus becoming doube positive cells (CD4+CD8+) and by inducing CTL (CD4-CD8+high) to acquire the double positive phenotype (CD4+CD8α+high). Therefore, KP may induce several effects on different immune cell subsets. For this reason, further research is needed aimed at characterizing each “effect” of KP and thus identifying the best use of the decapeptide for vaccination practice, therapeutic purposes or as vaccine adjuvant. RIASSUNTO Il virus della PRRS (Porcine Reproductive Respiratory Syndrome) è uno dei più diffusi agenti patogeni negli allevamenti suini di tutto il mondo, responsabile di una sindrome riproduttiva e respiratoria causa di gravi danni ad impatto sanitario ed economico. Questo virus è emerso attorno alla fine degli anni ’80 ma nonostante siano passati circa una trentina di anni, le conoscenze su alcuni punti essenziali che riguardano le caratteristiche del virus (patogenesi, risposta immunitaria, epidemiologia) appaiono ancora spesso incomplete. Considerando che lo sviluppo dei vaccini moderni è basato sui principi dell’immunità innata e acquisita è essenziale una sempre più completa conoscenza del sistema immunitario inteso come modulazione/regolazione molecolare della risposta infiammatoria e immunitaria in corso di tale infezione. Questo lavoro di tesi, suddiviso in tre diversi studi, ha l’intento di contribuire all’aumento delle informazioni riguardo l’interazione del sistema immunitario, con il virus della PRRS in condizioni di infezione naturale. L’obbiettivo del primo studio, intitolato “Associazione di cellule memoria, cellule citotossiche e cellule secernenti IFN- nella risposta immunitaria in corso di infezione naturale da Virus della Sindrome Riproduttiva e Respiratoria del Suino (PRRSV)” è stato di valutare l’attivazione e la modulazione della risposta immunitaria in suini naturalmente infetti da PRRSV rispetto ad un gruppo controllo non infetto. I parametri valutati sono stati la viremia mediante PCR, il titolo anticorpale mediante ELISA, il numero di cellule secernenti IFN- (IFN- SC) mediante tecnica ELISPOT e la fenotipizzazione di alcune sottopopolazioni linfocitarie (Cellule citotossiche, linfociti T memoria e linfociti T citotossici) mediante citofluorimetria a flusso. Dai risultati ottenuti è stato possibile osservare che l’attivazione della risposta immunitaria cellulo-mediata verso PRRSV appare ritardata durante l’infezione e che l’andamento, in termini di IFN- SC e dei cambiamenti delle sottopopolazioni linfocitarie, mostra comunque degli incrementi seppur successivi nel tempo. E’ stato inoltre osservato che gli andamenti delle diverse sottopopolazioni immunitarie cellulari appaiono temporalmente associati ai livelli di IFN- SC PRRSV-specifiche e ciò potrebbe essere interpretato sulla base del ruolo funzionale che tali sottopopolazioni linfocitarie potrebbero avere nella produzione/secrezione specifica della citochina immunoattivatrice IFN-. Questi dati inoltre supportano l’ipotesi che l’età degli animali alla comparsa dell’infezione o, come tipicamente ipotizzato nell’infezione da PRRSV, le differenti caratteristiche immunobiologiche dell’isolato di campo, sia condizioni critiche nell’ influenzare l’andamento qualitativo e quantitativo della risposta cellulo-mediata durante l’infezione naturale da PRRSV. Il secondo studio, dal titolo “Valutazione della risposta immunitaria nei confronti di una vaccinazione contro PCV2 in suini riscontrati PRRSV viremici e non viremici alla vaccinazione” ha avuto lo scopo di valutare se il virus della PRRS potesse andare ad interferire sull’attivazione della risposta immunitaria indotta da vaccinazione contro PCV2 nel suino. In questo lavoro sono stati arruolati 200 animali divisi in due gruppi, PCV2 Vaccinato (a 4 settimane di età) e PCV2 Non Vaccinato (controllo negativo). Alcuni suinetti di entrambi i gruppi, si sono naturalmente infettati con PRRSV, come determinato con l’analisi della viremia da PRRSV, per cui è stato possibile creare quattro sottogruppi, rispettivamente: PCV2 vaccinato - PRRSV viremico PCV2 vaccinato - PRRSV non viremico PCV2 non vaccinato - PRRSV viremico PCV2 non vaccinato - PRRSV non viremico Su questi quattro sottogruppi sono stati valutati i seguenti parametri: numero di cellule secernenti IFN- PCV2 specifiche, ed i titoli anticorpali mediante tecniche ELISA ed IPMA. Dall’analisi dei dati immunologici derivati dalle suddette tecniche è stato possibile dedurre che: I bassi valori anticorpali nei confronti di PCV2 del gruppo Vaccinato PCV2-PRRSV viremico già al periodo della vaccinazione (4 settimane di età) potrebbero essere messi in relazione ad una ridotta assunzione di colostro legata allo stato di viremia da PRRSV Indipendentemente dallo stato viremico, i dati sierologici del gruppo vaccinato PCV2 provenienti sia da ELISA sia da IPMA non mostrano differenze statisticamente significative. Di conseguenza è possibile affermare che in questo caso PRRSV non interferisce con la risposta anticorpale promossa dal vaccino PCV2. La risposta immunitaria cellulo-mediata, intesa come numero di cellule secernenti IFN- PCV2 specifiche nel gruppo PCV2 vaccinato PRRS viremico sembra essere compromessa, come viene infatti dimostrato dalla diminuzione del numero di cellule secernenti IFN- dopo la vaccinazione contro PCV2, comparata con il gruppo PCV2 vaccinato- non viremico. I dati evidenziano ed ulteriormente sostengono il ruolo inibitorio del virus della PRRSV sullo sviluppo ed attivazione della risposta immunitaria e come un infezione naturale ad età precoci possa influenzare negativamente la risposta immunitaria ad altri patogeni/antigeni. Il terzo studio, intitolato “Modulazione fenotipica di: monociti CD14+, cellule natural killer (NK), T natural killer (NKT) e sottopopolazioni linfocitarie T CD4+ e CD8+ durante stimolazione con killer peptide (KP) nella specie suina” ha avuto come scopo quello di stabilire se e come il Peptide Killer (KP) potesse modulare la risposta immunitaria in termini di attivazione di specifiche sottopopolazioni linfocitarie. Si tratta di un approccio preliminare anche ai fini di successivamente valutare tale KP in un potenziale ruolo antivirale o come adiuvante. In questo lavoro, periferal blood mononuclear cells (PBMC) suine sono state stimolate con KP a tre diverse concentrazioni (10, 20 e 40 g/ml) per tre diversi tempi (24, 48 e 72 ore). TEMPI DI STIMOLAZIONE (ore) CONCENTRAZIONE DI KP (g/ml) 24 0-10-20-40 48 0-10-20-40 72 0-10-20-40 Mediante la citometria a flusso è stato dunque possibile analizzare il comportamento qualitativo e quantitativo di alcune sottopopolazioni linfocitarie sotto lo stimolo del KP, tra cui: monociti, cellule Natural Killer (NK), cellule T Natural Killer (NKT) e linfociti T CD4 e CD8+. Dai dati ottenuti è stato possibile dedurre che: 1) KP promuove un’attivazione dei monociti dose-dipendente in particolare dopo 24 ore di stimolazione, inducendo uno “shift” fenotipico e di maturazione monocitaria maggiormente coinvolto nel sostegno della risposta innata/infiammatoria. 2) KP induce una forte modulazione dose-dipendente di cellule NK e NKT con un forte aumento della frazione delle cellule NKT rispetto alle NK, sottopopolazioni entrambe coinvolte nella citotossicità cellulare mediata da anticorpi (ADCC). L’aumento è riscontrabile soprattutto dopo 24 ore di stimolazione. 3) KP promuove una significativa attivazione della sottopopolazione del linfociti T citotossici (CTL). 4) Per quanto riguarda la marcatura CD4+/CD8+ è stato dimostrato che KP ha la capacità di modulare sia il fenotipo T helper che T citotossico, inducendo le cellule T helper ad acquisire CD8 diventando quindi doppio positive (CD4+CD8+) ed inducendo il fenotipo CTL (CD4-CD8+high) ad acquisire il fenotipo doppio positivo (CD4+CD8α+high). Molti dunque potrebbero essere gli effetti che il decapeptide KP potrebbe esercitare sulle diverse sottopopolazioni del sistema immunitario, per questo motivo va evidenziata la necessità di impostare e attuare nuove ricerche che portino alla caratterizzazione di ciascuna “abilità” di KP e che conducano successivamente alla scoperta del migliore utilizzo che si possa fare del decapeptide sia dal punto di vista vaccinale, terapeutico oppure sotto forma di adiuvante vaccinale.
Resumo:
Objective: Previous studies have suggested that somatoform disorders (SFD) might be associated with changes in the function of the central and autonomic nervous systems. The aim of this study was to examine the possible immunological differences between SFD and healthy controls. Methods: Twenty-four patients with SFD and 13 healthy individuals completed the psychological questionnaires to assess symptom reporting [Symptom Checklist-90 Revised (SCL-90-R)] and to diagnose for SFD [Screening for Somatoform Symptoms scale (SOMS-scale)]. Participants also provided a blood sample taken in the morning, which was analysed with an automated cell counter to determine the number of leucocytes per μl and with flow cytometry to determine lymphocyte subsets. Results: With the exception of a higher T4/T8 ratio in the patient group, which was mainly because of lower CD8 counts, there were no significant differences in the absolute number of lymphocytes (subsets) between patients with SFD and healthy subjects. A positive correlation between B-lymphocyte subsets (CD19+CD22+, CD19+CD5+, CD19+CD3-) to all scales of the SCL-90-R, except somatisation, were found in SFD. Additionally, a positive correlation was found in SFD between CD14+CD16+ monocytes and somatisation (0.573) on the SCL-90-R scale. Conclusion: These data indicate that patients with SFD have an enhanced humoral immunity as shown by increased B-cell numbers and furthermore an elevated T4/T8 ratio because of lower CD8 suppressor cells. Further studies will be required to determine whether these alterations in lymphocyte subsets are directly involved in the pathophysiology of SFD. © 2007 Blackwell Munksgaard.
Resumo:
Recent studies have shown that human papillomavirus (HPV) DNA can be found in circulating blood, including peripheral blood mononuclear cells (PBMCs), sera, plasma, and arterial cord blood. In light of these findings, DNA extracted from PBMCs from healthy blood donors were examined in order to determine how common HPV DNA is in blood of healthy individuals. Blood samples were collected from 180 healthy male blood donors (18-76 years old) through the Australian Red Cross Blood Services. Genomic DNA was extracted and specimens were tested for HPV DNA by PCR using a broad range primer pair. Positive samples were HPV-type determined by cloning and sequencing. HPV DNA was found in 8.3% (15/180) of the blood donors. A wide variety of different HPV types were isolated from the PBMCs; belonging to the cutaneous beta and gamma papillomavirus genera and mucosal alpha papillomaviruses. High-risk HPV types that are linked to cancer development were detected in 1.7% (3/180) of the PBMCs. Blood was also collected from a healthy HPV-positive 44-year-old male on four different occasions in order to determine which blood cell fractions harbor HPV. PBMCs treated with trypsin were negative for HPV, while non-trypsinized PBMCs were HPV-positive. This suggests that the HPV in blood is attached to the outside of blood cells via a protein-containing moiety. HPV was also isolated in the B cells, dendritic cells, NK cells, and neutrophils. To conclude, HPV present in PBMCs could represent a reservoir of virus and a potential new route of transmission.
Resumo:
The absence of cellular immunity is central to the pathogenesis of herpesvirus-mediated diseases after allogeneic hemopoietic stem cell transplantation (HSCT). For both bone marrow (BM)– and granulocyte-colony stimulating factor–mobilized peripheral blood stem cells (PBSCs) HSCT, donor-derived Epstein-Barr virus (EBV) and cytomegalovirus (CMV) peptide–specific CD8+ T cells clones undergo early expansion and persist long-term, with additional diversification arising from novel antigen-specific clones from donor-derived progenitors. Whether BM or PBSC is the superior source of antiviral CD8+ T cells is unclear. Given that PBSC has largely replaced BM as a source of stem cells for HSCT, it is unlikely that herpesvirus effector T-cell reconstitution will ever be compared prospectively. PBSC grafts contain 10 to 30 times more T cells than BM and a randomized study found proven viral infections were more frequent in BM than PBSC recipients, suggesting viral-specific T-cell immunity is enhanced in PBSC. Recently Moss showed in lung cancer patients that herpesvirus-specific BM-derived CD8+ T cells have unique homing properties relative to herpesvirus-specific CD8+ T cells present in unmobilized peripheral blood (PB). Immunodominant EBV-lytic peptide–specific CD8+ T cells were enriched in BM but were reduced for CMV peptide–specific CD8+ T cells relative to PB. EBV-latent peptide–specific CD8+ T cells were equivalent, which has relevance in the context of posttransplantation lymphoproliferative disorder for which impaired EBV-latent CD8+ T-cell immunity is a risk-factor. A comparison of herpesvirus-specific cellular immunity in PBSC versus PB has yet to be performed.
Resumo:
Migraine is a debilitating neurovascular disorder, with a substantial genetic component. The exact cause of a migraine attack is unknown; however cortical hyperexcitability is thought to play a role. As Gamma-aminobutyric Acid (GABA) is the major inhibitory neurotransmitter in the brain, malfunctioning of this system may be a cause of the hyperexcitability. To date, there has been limited research examining the gene expression or genetics of GABA receptors in relation to migraine. The aim of our study was to determine if GABA receptors play a role in migraine by investigating their gene expression using profile in migraine affected individuals and non-affected controls by Q-PCR. Gene expression of GABA(A) receptor subunit isoforms (GABRA3, GABRB3, GABRQ) and GABA(B) receptor 2 (GABBR2) was quantified in mRNA obtained from peripheral blood leukocytes from 28 migraine subjects and 22 healthy control subjects. Analysis of results showed that two of the tested genes, GABRA3 and GABBR2, were significantly down regulated in migraineurs (P=0.018; P=0.017), compared to controls. Results from the other tested genes did not show significant gene expression variation. The results indicate that there may be specific GABA receptor gene expression variation in migraine, particularly involving the GABRA3 and GABBR2 genes. This study also identifies GABRA3 and GABBR2 as potential biomarkers to select migraineurs that may be more responsive to GABA agonists with future investigations in this area warranted.
Resumo:
Objective To evaluate relative telomere length of female migraine patients. Background Migraine is a debilitating disorder affecting 6-28% of the population. Studies on the mechanisms of migraine have demonstrated genetic causes but the pathophysiology and subcellular effects of the disease remain poorly understood. Shortened telomere length is associated with age-related or chronic diseases, and induced stresses. Migraine attacks may impart significant stress on cellular function, thus this study investigates a correlation between shortening of telomeres and migraine. Methods Relative telomere length was measured using a previously described quantitative polymerase chain reaction method. A regression analysis was performed to assess differences in mean relative telomere length between migraine patients and healthy controls. Results The leukocyte telomeres of a cohort of 142 Caucasian female migraine subjects aged 18-77 years and 143 matched 17-77-year-old healthy control Caucasian women were examined.A significantly shorter relative telomere length was observed in the migraine group compared with the control group after adjusting for age and body mass index (P = .001). In addition, age of onset was observed to associate with the loss of relative telomere length, especially at early age of onset (<17 years old). No association was observed between relative telomere length and the severity and frequency of migraine attacks and the duration of migraine. Conclusion Telomeres are shorter in migraine patients and there is more variation in telomere length in migraine patients.
Resumo:
Transfusion of blood components has been associated with poor patient outcomes and, an overall increase in morbidity and mortality. Differences in the blood components arising from donor health, age and immune status may impact on outcomes of transfusion and transfusion-related immune modulation in recipients. The aim of this study was to investigate differences in inflammatory profile in donors and association with parameters including age, gender and deficiency status of pattern recognition molecule mannose-binding lectin (MBL). MBL level was determined by ELISA. Serum levels of interleukin (IL)-1α, IL-1β, IL-6, IL-8, IL-10, IL-12, tumour necrosis factor (TNF)-α, macrophage inflammatory protein (MIP)-1α, monocyte chemoattractant protein (MCP)-1, interferon (IFN)-α, and IFN-γ were examined by cytometric bead array (CBA). C-reactive protein (CRP) and rheumatoid factor (RF) were examined by immunoturbidimetry. This study demonstrated age was a parameter associated with the immune profile of blood donors, with significant increases in MCP-1 (p < 0.05) and RF (p < 0.05) and decreases in IL-1α evident in the older donors (61–76 years). Significant gender-associated differences in MCP-1, IL-12 and CRP plasma levels in the blood donor cohort were also reported. There was no significant difference in the level of any inflammatory markers studied according to MBL status. This study demonstrated that age and gender are associated with inflammatory profile in donors. These differences may be a factor impacting on outcomes of transfusion.
Resumo:
Chlamydia trachomatis infections can result in the development of serious sequelae such as pelvic inflammatory disease and tubal infertility. In this study, peripheral blood mononuclear cells from women who were undergoing or had recently undergone IVF treatment were cultured ex vivo with C. trachomatis to identify the immune responses associated with women who had serological evidence of a history of Chlamydia infection. Cytokines secreted into the supernatant from the cultures were measured using ELISA, and the level of IL-1β was found to be significantly higher in Chlamydia positive women than Chlamydia negative women. qRT-PCR analysis of the expression of 88 immune-related genes showed trends towards an upregulation of CXCL10, CXCL11 and HLA-A in Chlamydia positive women compared with Chlamydia negative women. These findings support that some women launch a more marked proinflammatory response upon infection with C. trachomatis and this may be associated with why C. trachomatis induces infertility in some infected women.
Resumo:
INTRODUCTION: MicroRNAs (miRNAs) are being increasingly studied in relation to energy metabolism and body composition homeostasis. Indeed, the quantitative analysis of miRNAs expression in different adiposity conditions may contribute to understand the intimate mechanisms participating in body weight control and to find new biomarkers with diagnostic or prognostic value in obesity management. OBJECTIVE: The aim of this study was the search for miRNAs in blood cells whose expression could be used as prognostic biomarkers of weight loss. METHODS: Ten Caucasian obese women were selected among the participants in a weight-loss trial that consisted in following an energy-restricted treatment. Weight loss was considered unsuccessful when <5% of initial body weight (non-responders) and successful when >5% (responders). At baseline, total miRNA isolated from peripheral blood mononuclear cells (PBMC) was sequenced with SOLiD v4. The miRNA sequencing data were validated by RT-PCR. RESULTS: Differential baseline expression of several miRNAs was found between responders and non-responders. Two miRNAs were up-regulated in the non-responder group (mir-935 and mir-4772) and three others were down-regulated (mir-223, mir-224 and mir-376b). Both mir-935 and mir-4772 showed relevant associations with the magnitude of weight loss, although the expression of other transcripts (mir-874, mir-199b, mir-766, mir-589 and mir-148b) also correlated with weight loss. CONCLUSIONS: This research addresses the use of high-throughput sequencing technologies in the search for miRNA expression biomarkers in obesity, by determining the miRNA transcriptome of PBMC. Basal expression of different miRNAs, particularly mir-935 and mir-4772, could be prognostic biomarkers and may forecast the response to a hypocaloric diet.
Resumo:
The mitochondrial DNA (mtDNA) control region is believed to play an important biological role in mtDNA replication. Large deletions in this region are rarely found, but when they do occur they might be expected to interfere with the replication of the molecule, thus leading to a reduction of mtDNA copy number. During a survey for mtDNA sequence variations in 5,559 individuals from the general Chinese population and 2,538 individuals with medical disorders, we identified a 50-bp deletion (m.298_347del50) in the mtDNA control region in a member of a healthy Han Chinese family belonging to haplogroup B4c1b2, as suggested by complete mtDNA genome sequencing. This deletion removes the conserved sequence block II (CSBII; region 299-315) and the replication primer location (region 317-321). However, quantification of the mtDNA copy number in this subject showed a value within a range that was observed in 20 healthy subjects without the deletion. The deletion was detected in the hair samples of the maternal relatives of the subject and exhibited variable heteroplasmy. Our current observation, together with a recent report for a benign 154-bp deletion in the mtDNA control region, suggests that the control of mtDNA replication may be more complex than we had thought. Hum Mutat 31:538-543, 2010. (C) 2010 Wiley-Liss, Inc.