162 resultados para PEDOT


Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the aim of fabricating multifunctional fibers with enhanced mechanical properties, electrical conductivity and electrochemical performance, we develop wet-spinning of composite formulation based on functionalized PEG-SWNT and PEDOT:PSS. The method of addition and loading are directly correlated to the quality and the ease of spinnability of the formulation and to the mechanical and electrical properties of the resultant fibers. Both the fiber modulus (Y) and strength (σ) scaled linearly with PEG-SWNT volume fraction (Vf). A remarkable reinforcement rate of dY/dVf = 417 GPa and dσ/dVf = 4 GPa were obtained when PEG-SWNTs at Vf ≤ 0.02. Further increase of PEG-SWNTs loading (i.e. up to Vf 0.12) resulted in further enhancements up to 22.8 GPa and 254 MPa in Modulus and ultimate stress, respectively. We also show the enhancement of electrochemical supercapacitor performance of composite fibers. These outstanding mechanical, electrical and electrochemical performances place these fibers among the best performing multifunctional composite fibers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to exploit the inherent properties of carbon nanotubes (CNT) in any polymer composite, systematic control of carbon nanotube loading and protocols that mitigate against CNT bundling are required. If such composites are to be rendered in fiber form via wet-spinning, then CNT bundling during the coagulation process must also be avoided. Here we have achieved this by utilizing highly exfoliated single walled carbon nanotubes (SWNT) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonicacid) (PEDOT:PSS) to obtain wet-spinnable composite formulations at various nanotube volume fractions (Vf). The addition of only 0.02 Vf of aggregate-free and individually dispersed SWNT resulted in a significant enhancement of modulus, tensile strength, electrical conductivity and two cell electrode specific capacitance of PEDOT:PSS–SWNT composite fibers to 5.2 GPa, 200 MPa, 450 S cm−1 and 59 F g−1 by the rate of dY/dVf = 89 GPa, dσ/dVf = 3.2 GPa, dS/dVf = 13 300 S cm−1 and 6 folds, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is a challenge to retain the high stretchability of an elastomer when used in polymer composites. Likewise, the high conductivity of organic conductors is typically compromised when used as filler in composite systems. Here, it is possible to achieve elastomeric fiber composites with high electrical conductivity at relatively low loading of the conductor and, more importantly, to attain mechanical properties that are useful in strain-sensing applications. The preparation of homogenous composite formulations from polyurethane (PU) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) that are also processable by fiber wet-spinning techniques are systematically evaluated. With increasing PEDOT:PSS loading in the fiber composites, the Young's modulus increases exponentially and the yield stress increases linearly. A model describing the effects of the reversible and irreversible deformations as a result of the re-arrangement of PEDOT:PSS filler networks within PU and how this relates to the electromechanical properties of the fibers during the tensile and cyclic stretching is presented. Conducting elastomeric fibers based on a composite of polyurethane (PU) and PEDOT:PSS, produced by a wet-spinning method, have high electrical conductivity and stretchability. These fibers can sense large strains by changes in resistance. The PU/PEDOT:PSS fiber is optimized to achieve the best strain sensing. PU/PEDOT:PSS fibers can be produced on a large scale and integrated into conventional textiles by weaving or knitting. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bi2Te3 based alloy nanosheet (NS)/poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) composite films were prepared separately by spin coating and drop casting techniques. The drop cast composite film containing 4.10 wt % Bi2Te3 based alloy NSs showed electrical conductivity as high as 1295.21 S/cm, which is higher than that (753.8 S/cm) of a dimethyl sulfoxide doped PEDOT:PSS film prepared under the same condition and that (850-1250 S/cm) of the Bi2Te3 based alloy bulk material. The composite film also showed a very high power factor value, ∼32.26 μWm(-1) K(-2). With the content of Bi2Te3 based alloy NSs increasing from 0 to 4.10 wt %, the electrical conductivity and Seebeck coefficient of the composite films increase simultaneously.