921 resultados para PARAMETER-PRESERVING ANTIFERROMAGNET


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The common approach to estimate bus dwell time at a BRT station is to apply the traditional dwell time methodology derived for suburban bus stops. In spite of being sensitive to boarding and alighting passenger numbers and to some extent towards fare collection media, these traditional dwell time models do not account for the platform crowding. Moreover, they fall short in accounting for the effects of passenger/s walking along a relatively longer BRT platform. Using the experience from Brisbane busway (BRT) stations, a new variable, Bus Lost Time (LT), is introduced in traditional dwell time model. The bus lost time variable captures the impact of passenger walking and platform crowding on bus dwell time. These are two characteristics which differentiate a BRT station from a bus stop. This paper reports the development of a methodology to estimate bus lost time experienced by buses at a BRT platform. Results were compared with the Transit Capacity and Quality of Servce Manual (TCQSM) approach of dwell time and station capacity estimation. When the bus lost time was used in dwell time calculations it was found that the BRT station platform capacity reduced by 10.1%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tear film plays an important role preserving the health of the ocular surface and maintaining the optimal refractive power of the cornea. Moreover dry eye syndrome is one of the most commonly reported eye health problems. This syndrome is caused by abnormalities in the properties of the tear film. Current clinical tools to assess the tear film properties have shown certain limitations. The traditional invasive methods for the assessment of tear film quality, which are used by most clinicians, have been criticized for the lack of reliability and/or repeatability. A range of non-invasive methods of tear assessment have been investigated, but also present limitations. Hence no “gold standard” test is currently available to assess the tear film integrity. Therefore, improving techniques for the assessment of the tear film quality is of clinical significance and the main motivation for the work described in this thesis. In this study the tear film surface quality (TFSQ) changes were investigated by means of high-speed videokeratoscopy (HSV). In this technique, a set of concentric rings formed in an illuminated cone or a bowl is projected on the anterior cornea and their reflection from the ocular surface imaged on a charge-coupled device (CCD). The reflection of the light is produced in the outer most layer of the cornea, the tear film. Hence, when the tear film is smooth the reflected image presents a well structure pattern. In contrast, when the tear film surface presents irregularities, the pattern also becomes irregular due to the light scatter and deviation of the reflected light. The videokeratoscope provides an estimate of the corneal topography associated with each Placido disk image. Topographical estimates, which have been used in the past to quantify tear film changes, may not always be suitable for the evaluation of all the dynamic phases of the tear film. However the Placido disk image itself, which contains the reflected pattern, may be more appropriate to assess the tear film dynamics. A set of novel routines have been purposely developed to quantify the changes of the reflected pattern and to extract a time series estimate of the TFSQ from the video recording. The routine extracts from each frame of the video recording a maximized area of analysis. In this area a metric of the TFSQ is calculated. Initially two metrics based on the Gabor filter and Gaussian gradient-based techniques, were used to quantify the consistency of the pattern’s local orientation as a metric of TFSQ. These metrics have helped to demonstrate the applicability of HSV to assess the tear film, and the influence of contact lens wear on TFSQ. The results suggest that the dynamic-area analysis method of HSV was able to distinguish and quantify the subtle, but systematic degradation of tear film surface quality in the inter-blink interval in contact lens wear. It was also able to clearly show a difference between bare eye and contact lens wearing conditions. Thus, the HSV method appears to be a useful technique for quantitatively investigating the effects of contact lens wear on the TFSQ. Subsequently a larger clinical study was conducted to perform a comparison between HSV and two other non-invasive techniques, lateral shearing interferometry (LSI) and dynamic wavefront sensing (DWS). Of these non-invasive techniques, the HSV appeared to be the most precise method for measuring TFSQ, by virtue of its lower coefficient of variation. While the LSI appears to be the most sensitive method for analyzing the tear build-up time (TBUT). The capability of each of the non-invasive methods to discriminate dry eye from normal subjects was also investigated. The receiver operating characteristic (ROC) curves were calculated to assess the ability of each method to predict dry eye syndrome. The LSI technique gave the best results under both natural blinking conditions and in suppressed blinking conditions, which was closely followed by HSV. The DWS did not perform as well as LSI or HSV. The main limitation of the HSV technique, which was identified during the former clinical study, was the lack of the sensitivity to quantify the build-up/formation phase of the tear film cycle. For that reason an extra metric based on image transformation and block processing was proposed. In this metric, the area of analysis was transformed from Cartesian to Polar coordinates, converting the concentric circles pattern into a quasi-straight lines image in which a block statistics value was extracted. This metric has shown better sensitivity under low pattern disturbance as well as has improved the performance of the ROC curves. Additionally a theoretical study, based on ray-tracing techniques and topographical models of the tear film, was proposed to fully comprehend the HSV measurement and the instrument’s potential limitations. Of special interested was the assessment of the instrument’s sensitivity under subtle topographic changes. The theoretical simulations have helped to provide some understanding on the tear film dynamics, for instance the model extracted for the build-up phase has helped to provide some insight into the dynamics during this initial phase. Finally some aspects of the mathematical modeling of TFSQ time series have been reported in this thesis. Over the years, different functions have been used to model the time series as well as to extract the key clinical parameters (i.e., timing). Unfortunately those techniques to model the tear film time series do not simultaneously consider the underlying physiological mechanism and the parameter extraction methods. A set of guidelines are proposed to meet both criteria. Special attention was given to a commonly used fit, the polynomial function, and considerations to select the appropriate model order to ensure the true derivative of the signal is accurately represented. The work described in this thesis has shown the potential of using high-speed videokeratoscopy to assess tear film surface quality. A set of novel image and signal processing techniques have been proposed to quantify different aspects of the tear film assessment, analysis and modeling. The dynamic-area HSV has shown good performance in a broad range of conditions (i.e., contact lens, normal and dry eye subjects). As a result, this technique could be a useful clinical tool to assess tear film surface quality in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Performance comparisons between File Signatures and Inverted Files for text retrieval have previously shown several significant shortcomings of file signatures relative to inverted files. The inverted file approach underpins most state-of-the-art search engine algorithms, such as Language and Probabilistic models. It has been widely accepted that traditional file signatures are inferior alternatives to inverted files. This paper describes TopSig, a new approach to the construction of file signatures. Many advances in semantic hashing and dimensionality reduction have been made in recent times, but these were not so far linked to general purpose, signature file based, search engines. This paper introduces a different signature file approach that builds upon and extends these recent advances. We are able to demonstrate significant improvements in the performance of signature file based indexing and retrieval, performance that is comparable to that of state of the art inverted file based systems, including Language models and BM25. These findings suggest that file signatures offer a viable alternative to inverted files in suitable settings and positions the file signatures model in the class of Vector Space retrieval models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bounded parameter Markov Decision Processes (BMDPs) address the issue of dealing with uncertainty in the parameters of a Markov Decision Process (MDP). Unlike the case of an MDP, the notion of an optimal policy for a BMDP is not entirely straightforward. We consider two notions of optimality based on optimistic and pessimistic criteria. These have been analyzed for discounted BMDPs. Here we provide results for average reward BMDPs. We establish a fundamental relationship between the discounted and the average reward problems, prove the existence of Blackwell optimal policies and, for both notions of optimality, derive algorithms that converge to the optimal value function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inverse problems based on using experimental data to estimate unknown parameters of a system often arise in biological and chaotic systems. In this paper, we consider parameter estimation in systems biology involving linear and non-linear complex dynamical models, including the Michaelis–Menten enzyme kinetic system, a dynamical model of competence induction in Bacillus subtilis bacteria and a model of feedback bypass in B. subtilis bacteria. We propose some novel techniques for inverse problems. Firstly, we establish an approximation of a non-linear differential algebraic equation that corresponds to the given biological systems. Secondly, we use the Picard contraction mapping, collage methods and numerical integration techniques to convert the parameter estimation into a minimization problem of the parameters. We propose two optimization techniques: a grid approximation method and a modified hybrid Nelder–Mead simplex search and particle swarm optimization (MH-NMSS-PSO) for non-linear parameter estimation. The two techniques are used for parameter estimation in a model of competence induction in B. subtilis bacteria with noisy data. The MH-NMSS-PSO scheme is applied to a dynamical model of competence induction in B. subtilis bacteria based on experimental data and the model for feedback bypass. Numerical results demonstrate the effectiveness of our approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computational models for cardiomyocyte action potentials (AP) often make use of a large parameter set. This parameter set can contain some elements that are fitted to experimental data independently of any other element, some elements that are derived concurrently with other elements to match experimental data, and some elements that are derived purely from phenomenological fitting to produce the desired AP output. Furthermore, models can make use of several different data sets, not always derived for the same conditions or even the same species. It is consequently uncertain whether the parameter set for a given model is physiologically accurate. Furthermore, it is only recently that the possibility of degeneracy in parameter values in producing a given simulation output has started to be addressed. In this study, we examine the effects of varying two parameters (the L-type calcium current (I(CaL)) and the delayed rectifier potassium current (I(Ks))) in a computational model of a rabbit ventricular cardiomyocyte AP on both the membrane potential (V(m)) and calcium (Ca(2+)) transient. It will subsequently be determined if there is degeneracy in this model to these parameter values, which will have important implications on the stability of these models to cell-to-cell parameter variation, and also whether the current methodology for generating parameter values is flawed. The accuracy of AP duration (APD) as an indicator of AP shape will also be assessed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The action potential (ap) of a cardiac cell is made up of a complex balance of ionic currents which flow across the cell membrane in response to electrical excitation of the cell. Biophysically detailed mathematical models of the ap have grown larger in terms of the variables and parameters required to model new findings in subcellular ionic mechanisms. The fitting of parameters to such models has seen a large degree of parameter and module re-use from earlier models. An alternative method for modelling electrically exciteable cardiac tissue is a phenomenological model, which reconstructs tissue level ap wave behaviour without subcellular details. A new parameter estimation technique to fit the morphology of the ap in a four variable phenomenological model is presented. An approximation of a nonlinear ordinary differential equation model is established that corresponds to the given phenomenological model of the cardiac ap. The parameter estimation problem is converted into a minimisation problem for the unknown parameters. A modified hybrid Nelder–Mead simplex search and particle swarm optimization is then used to solve the minimisation problem for the unknown parameters. The successful fitting of data generated from a well known biophysically detailed model is demonstrated. A successful fit to an experimental ap recording that contains both noise and experimental artefacts is also produced. The parameter estimation method’s ability to fit a complex morphology to a model with substantially more parameters than previously used is established.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pipelines are important lifeline facilities spread over a large area and they generally encounter a range of seismic hazards and different soil conditions. The seismic response of a buried segmented pipe depends on various parameters such as the type of buried pipe material and joints, end restraint conditions, soil characteristics, burial depths, and earthquake ground motion, etc. This study highlights the effect of the variation of geotechnical properties of the surrounding soil on seismic response of a buried pipeline. The variations of the properties of the surrounding soil along the pipe are described by sampling them from predefined probability distribution. The soil-pipe interaction model is developed in OpenSEES. Nonlinear earthquake time-history analysis is performed to study the effect of soil parameters variability on the response of pipeline. Based on the results, it is found that uncertainty in soil parameters may result in significant response variability of the pipeline.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Wright-Fisher model is an Itô stochastic differential equation that was originally introduced to model genetic drift within finite populations and has recently been used as an approximation to ion channel dynamics within cardiac and neuronal cells. While analytic solutions to this equation remain within the interval [0,1], current numerical methods are unable to preserve such boundaries in the approximation. We present a new numerical method that guarantees approximations to a form of Wright-Fisher model, which includes mutation, remain within [0,1] for all time with probability one. Strong convergence of the method is proved and numerical experiments suggest that this new scheme converges with strong order 1/2. Extending this method to a multidimensional case, numerical tests suggest that the algorithm still converges strongly with order 1/2. Finally, numerical solutions obtained using this new method are compared to those obtained using the Euler-Maruyama method where the Wiener increment is resampled to ensure solutions remain within [0,1].