169 resultados para PALEOPROTEROZOIC SUPERCONTINENT
Resumo:
Physical properties provide valuable information about the nature and behavior of rocks and minerals. The changes in rock physical properties generate petrophysical contrasts between various lithologies, for example, between shocked and unshocked rocks in meteorite impact structures or between various lithologies in the crust. These contrasts may cause distinct geophysical anomalies, which are often diagnostic to their primary cause (impact, tectonism, etc). This information is vital to understand the fundamental Earth processes, such as impact cratering and associated crustal deformations. However, most of the present day knowledge of changes in rock physical properties is limited due to a lack of petrophysical data of subsurface samples, especially for meteorite impact structures, since they are often buried under post-impact lithologies or eroded. In order to explore the uppermost crust, deep drillings are required. This dissertation is based on the deep drill core data from three impact structures: (i) the Bosumtwi impact structure (diameter 10.5 km, 1.07 Ma age; Ghana), (ii) the Chesapeake Bay impact structure (85 km, 35 Ma; Virginia, U.S.A.), and (iii) the Chicxulub impact structure (180 km, 65 Ma; Mexico). These drill cores have yielded all basic lithologies associated with impact craters such as post-impact lithologies, impact rocks including suevites and breccias, as well as fractured and unfractured target rocks. The fourth study case of this dissertation deals with the data of the Paleoproterozoic Outokumpu area (Finland), as a non-impact crustal case, where a deep drilling through an economically important ophiolite complex was carried out. The focus in all four cases was to combine results of basic petrophysical studies of relevant rocks of these crustal structures in order to identify and characterize various lithologies by their physical properties and, in this way, to provide new input data for geophysical modellings. Furthermore, the rock magnetic and paleomagnetic properties of three impact structures, combined with basic petrophysics, were used to acquire insight into the impact generated changes in rocks and their magnetic minerals, in order to better understand the influence of impact. The obtained petrophysical data outline the various lithologies and divide rocks into four domains. Based on target lithology the physical properties of the unshocked target rocks are controlled by mineral composition or fabric, particularly porosity in sedimentary rocks, while sediments result from diverse sedimentation and diagenesis processes. The impact rocks, such as breccias and suevites, strongly reflect the impact formation mechanism and are distinguishable from the other lithologies by their density, porosity and magnetic properties. The numerous shock features resulting from melting, brecciation and fracturing of the target rocks, can be seen in the changes of physical properties. These features include an increase in porosity and subsequent decrease in density in impact derived units, either an increase or a decrease in magnetic properties (depending on a specific case), as well as large heterogeneity in physical properties. In few cases a slight gradual downward decrease in porosity, as a shock-induced fracturing, was observed. Coupled with rock magnetic studies, the impact generated changes in magnetic fraction the shock-induced magnetic grain size reduction, hydrothermal- or melting-related magnetic mineral alteration, shock demagnetization and shock- or temperature-related remagnetization can be seen. The Outokumpu drill core shows varying velocities throughout the drill core depending on the microcracking and sample conditions. This is similar to observations by Kern et al., (2009), who also reported the velocity dependence on anisotropy. The physical properties are also used to explain the distinct crustal reflectors as observed in seismic reflection studies in the Outokumpu area. According to the seismic velocity data, the interfaces between the diopside-tremolite skarn layer and either serpentinite, mica schist or black schist are causing the strong seismic reflectivities.
Resumo:
This study provides insights into the composition and origin of ferropicrite dikes (FeOtot = 13 17 wt. %; MgO = 13 19 wt. %) and associated meimechite, picrite, picrobasalt, and basalt dikes found at Vestfjella, western Dronning Maud Land, Antarctica. The dikes crosscut Jurassic Karoo continental flood basalts (CFB) that were emplaced during the early stages of the breakup of the Gondwana supercontinent ~180 Ma ago. Selected samples (31 overall from at least eleven dikes) were analyzed for their mineral chemical, major element, trace element, and Sr, Nd, Pb, and Os isotopic compositions. The studied samples can be divided into two geochemically distinct types: (1) The depleted type (24 samples from at least nine dikes) is relatively depleted in the most incompatible elements and exhibits isotopic characteristics (e.g., initial εNd of +4.8 to +8.3 and initial 187Os/188Os of 0.1256 0.1277 at 180 Ma) similar to those of mid-ocean ridge basalts (MORB); (2) The enriched type (7 samples from at least two dikes) exhibits relatively enriched incompatible element and isotopic characteristics (e.g., initial εNd of +1.8 to +3.6 and initial 187Os/188Os of 0.1401 0.1425 at 180 Ma) similar to those of oceanic island basalts. Both magma types have escaped significant contamination by the continental crust. The depleted type is related to the main phase of Karoo magmatism and originated as highly magnesian (MgO up to 25 wt. %) partial melts at high temperatures (mantle potential temperature >1600 °C) and pressures (~5 6 GPa) from a sublithospheric, water-bearing, depleted peridotite mantle source. The enriched type sampled pyroxene-bearing heterogeneities that can be traced down to either recycled oceanic crust or melt-metasomatized portions of the sublithospheric or lithospheric mantle. The source of the depleted type represents a sublithospheric end-member source for many Karoo lavas and has subsequently been sampled by the MORBs of the Indian Ocean. These observations, together with the purported high temperatures, indicate that the Karoo CFBs were formed in an extensive melting episode caused mainly by internal heating of the upper mantle beneath the Gondwana supercontinent. My research supports the view that ferropicritic melts can be generated in several ways: the relative Fe-enrichment of mantle partial melts is most readily achieved by (1) relatively low degree of partial melting, (2) high pressure of partial melting, and (3) melting of enriched source components (e.g., pyroxenite and metasomatized peridotite). Ferropicritic whole-rock compositions could also result from accumulation, secondary alteration, and fractional crystallization, however, and caution is required when addressing the parental magma composition.
Resumo:
The four papers summarized in this thesis deal with the Archean and earliest Paleoproterozoic granitoid suites observed in the Suomussalmi district, eastern Finland. Geologically, the area belongs to the Kianta Complex of the Western Karelian Terrane in the Karelian Province of the Fennoscandian shield. The inherited zircons up to 3440 Ma old together with Sm Nd and Pb Pb data confirm the existence of previously anticipated Paleoarchean protocrust in Suomussalmi. The general timeline of granitoid magmatism is similar to that of the surrounding areas. TTG magmatism occurred in three distinct phases: ca 2.95 Ga, 2.83 2.78 Ga and 2.76 2.74 Ga. In Suomussalmi the TTGs sensu stricto (K2O/Na2O less than 0.5) belong to the low-HREE type and are interpreted as partial melts of garnet amphibolites, which did not significantly interact with mantle peridotites. Transitional TTGs (K2O/Na2O more than 0.5), present in Suomussalmi and absent from surrounding areas, display higher LILE concentrations, but otherwise closely resemble the TTGs sensu stricto and indicate that recycling of felsic crust commenced in Suomussalmi 200 Ma earlier than in surrounding areas. The youngest TTG phase was coeval with the intrusion of the Likamännikkö quartz alkali feldspar syenite (2741 ± 2 Ma) complex. The complex contains angular fragments of ultrabasic rock, which display considerable compositional heterogeneity and are interpreted as cumulates containing clinopyroxene (generally altered to actinolite), apatite, allanite, epidote, and albite. The quartz alkali feldspar syenite cannot be regarded as alkaline sensu stricto, despite clear alkaline affinities. Within Likamännikkö there are also calcite carbonatite patches, which display mantle-like O- and C-isotope values, as well as trace element characteristics consistent with a magmatic origin, and could thus be among the oldest known carbonatites in the world. Sanukitoid (2.73 2.71 Ga) and quartz diorite suites (2.70 Ga) overlap within error margins and display compositional similarities, but can be differentiated from each other on the basis of higher Ba, K2O and LREE contents of the sanukitoids. The Likamännikkö complex, sanukitoids and quartz diorites are interpreted as originating from the metasomatized mantle and mark the diversification of the granitoid clan after 200 Ma of evolution dominated by the TTG suite. Widespread migmatization and the intrusion of anatectic leucogranitoids as dykes and intrusions of varying size took place at 2.70 2.69 Ga, following collisional thickening of the crust. The leucogranitoids and leucosomes of migmatized TTGs are compositionally alike and characterized by high silica contents and a leucocratic appearance. Due to compositional overlap, definitive discrimination between leucogranitoids and transitional TTGs requires isotope datings and/or knowledge of field relationships. Leucogranitoids represent partial melts of the local TTGs, both the sensu stricto and transitional types, mostly derived under water fluxed conditions, with possible fluid sources being late sanukitoids and quartz diorites as well as dehydrating lower crust. The Paleoproterozoic 2.44 2.39 Ga A-type granitoids of the Kianta Complex emplaced in an extensional environment are linked to the coeval and more widespread mafic intrusions and dykes observed over most of the Archean nucleus of the Fennoscandian shield. The A-type intrusions in the Suomussalmi area are interpreted as partial melts of the Archean lower crust and display differences in composition and magnetite content, which indicate differences in the composition and oxidation state of the source.
Resumo:
Sanukitoid series intrusions can be found throughout the Archean Karelian Province of the Fennoscandian shield. All sanukitoids share the same controversial elemental characteristics: they have high content of incompatible elements such as K, Ba, and Sr as well as high content of the compatible elements Mg, Cr, and Ni, and high Mg#. This composition is explained by an enriched mantle wedge origin in a Neoarchean subduction setting. This study concentrates on sanukitoid intrusions and tonalite-trondhjemite-granodiorite series (TTGs) from Finnish part of the Karelian Province. The collected rock samples have been studied in the field and under microscope as well as for their whole-rock (including isotopes) and mineral compositions. The new data together with previously published analyses help us to better understand the petrogenesis, tectonic setting and reworking of the Archean rock units. TTGs from the Karelian Province form a voluminous series of granitoids and reworked migmatites. This study divides TTG series into two subgroups based on their elemental composition: low-HREE (heavy rare earth element) TTGs and high-HREE TTGs indicating pressure differences in their source. Sanukitoid series is a minor, divergent group of intrusions. These intrusions are variable sized, and the texture varies from even-grained to K-feldspar porphyritic. The elemental composition differentiates sanukitoids from more voluminous TTG groups, the SiO2 in sanukitoids varies to include series of gabbro, diorite, and granodiorite. U Pb age determinations from sanukitoid series show temporally limited emplacement between ~ 2745 2715 Ma after the main crust forming period in the area. Hafnium, neodymium, common lead, and oxygene isotopes indicate well homogenized characteristics. Recycled crust has made a variable, yet minor, contribution to sanukitoids, as evidenced by oxygene isotopes and inherited zircon cores. A proposed tectonic setting for the formation of the sanukitoid series is slab breakoff of oceanic lithosphere in subduction setting, with sanukitoids deriving from an enriched mantle wedge. The proposed setting explains some of the peculiar features of sanukitoids, such as their temporally limited occurrence and controversial elemental composition. Sanukitoids would occur after cessation of the regional growth of Archean crust, and they could be derived from mantle wedge previously enriched by melts and fluids from oceanic crust and sediments. A subsequent event during the Paleoproterozoic Svecofennian orogeny at ~1.9 Ga affected the appearance and microstructures of the rocks as well as caused redistribution of lead between minerals and whole rock. However, the deformation was not able to obliterate the original geochemical characteristics of these sanukitoids.
Resumo:
Understanding Neoproterozoic crustal evolution is fundamental to reconstructing the Gondwana supercontinent, which was assembled at this time. Here we report evidence of Cryogenian crustal reworking in the Madurai Block of the Southern Granulite Terrane of India. The study focuses on a garnet-bearing granite-charnockite suite, where the granite shows in situ dehydration into patches and veins of incipient charnockite along the contact with charnockite. The granite also carries dismembered layers of Mg-Al-rich granulite. Micro-textural evidence for dehydration of granite in the presence of CO2-rich fluids includes the formation of orthopyroxene by the breakdown of biotite, neoblastic zircon growth in the dehydration zone, at around 870 degrees C and 8kbar. The zircon U-Pb ages suggest formation of the granite, charnockite, and incipient charnockite at 836 +/- 73, 831 +/- 31, and 772 +/- 49Ma, respectively. Negative zircon epsilon Hf (t) (-5 to -20) values suggest that these rocks were derived from a reworked Palaeoproterozoic crustal source. Zircon grains in the Mg-Al-rich granulite record a spectrum of ages from ca. 2300 to ca. 500Ma, suggesting multiple provenances ranging from Palaeoproterozoic to mid-Neoproterozoic, with neoblastic zircon growth during high-temperature metamorphism in the Cambrian. We propose that the garnet-bearing granite and charnockite reflect the crustal reworking of aluminous crustal material indicated by the presence of biotite+quartz+aluminosilicate inclusions in the garnet within the granite. This crustal source can be the Mg-Al-rich layers carried by the granite itself, which later experienced high-temperature regional metamorphism at ca. 550Ma. Our model also envisages that the CO2 which dehydrated the garnet-bearing granite generating incipient charnockite was sourced from the proximal massive charnockite through advection. These Cryogenian crustal reworking events are related to prolonged tectonic activities prior to the final assembly of the Gondwana supercontinent.
Resumo:
The Nilgiri Block, southern India is an exhumed lower crust formed through arc magmatic processes in the Neoarchean. The main lithologies in this terrane include charnockites, gneisses, volcanic tuff, metasediments, banded iron formation and mafic-ultramafic bodies. Mafic-ultramafic rocks are present towards the northern and central part of the Nilgiri Block. We examine the evolution of these mafic granulites/metagabbros by phase diagram modeling and U-Pb sensitive high resolution ion microprobe (SHRIMP) dating. They consist of a garnet-clinopyroxene-plagioclase-hornblende-ilmenite +/- orthopyroxene +/- rutile assemblage. Garnet and clinopyroxene form major constituents with labradorite and orthopyroxene as the main mineral inclusions. Labradorite, identified using Raman analysis, shows typical peaks at 508 cm(-1), 479 cm(-1), 287 cm(-1) and 177 cm(-1). It is stable along with orthopyroxene towards the low-pressure high-temperature region of the granulite fades (M1 stage). Subsequently, orthopyroxene reacted with plagioclase to form the peak garnet + clinopyroxene + rutile assemblage (M2 stage). The final stage is represented by amphibolite facies-hornblende and plagioclase-rim around the garnet-clinopyroxene assemblage (M3 stage). Phase diagram modeling shows that these mafic granulites followed an anticlockwise P-T-t path during their evolution. The initial high-temperature metamorphism (M1 stage) was at 850-900 degrees C and similar to 9 kbar followed by high-pressure granulite fades metamorphism (M2 stage) at 850-900 degrees C and 14-15 kbar. U-Pb isotope studies of zircons using SHRIMP revealed late Neoarchean to early paleoproterozoic ages of crystallization and metamorphism respectively. The age data shows that these mafic granulites have undergone arc magmatism at ca. 25392 +/- 3 Ma and high-temperature, high-pressure metamorphism at ca. 2458.9 +/- 8.6 Ma. Thus our results suggests a late Neoarchean arc magmatism followed by early paleoproterozoic high-temperature, high-pressure granulite facies metamorphism due to the crustal thickening and suturing of the Nilgiri Block onto the Dharwar Craton. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
A área estudada está inserida na Faixa Ribeira, Segmento Central da Província Mantiqueira (Almeida et al., 1973, 1977, 1981), que representa um cinturão de dobramentos e empurrões gerado no Neo-proterozóico/Cambriano, durante a Orogênese Brasiliana, na borda sul/sudeste do Cráton do São Francisco (Almeida, 1971, 1977; Cordani et al., 1967, 1973; Cordani & Brito Neves, 1982; Teixeira & Figueiredo, 1991). Neste contexto, o Complexo Quirino é o embasamento retrabalhado do Terreno Paraíba do Sul (Heilbron et al., 2004). O Complexo Quirino é formado por extensos corpos de ortognaisses foliados a homogêneos, leuco a mesocráticos, de granulometria média à grossa, composicionalmente variando entre granitóides tonalíticos/granodioríticos a graníticos, e apresentando enclaves de rochas ultramáficas, máficas e cálcio-silicáticas (ricas em tremolita). Os ortognaisses tonalíticos/granodioríticos apresentam porfiroblastos de plagioclásio e a hornblenda como máfico principal, contrastando com os de composição granítica que apresentam porfiroblastos de K-feldspato e biotita predominante. Como acessórios aparecem zircão, titanita, apatita e epidoto. Também estão associados a estes ortognaisses, granitóides neoproterozóicos que formam corpos individualizados ou lentes anatéticas no conjunto paleoproterozóico. Estes são compostos predominantemente por biotita gnaisse e hornblenda-biotita gnaisse. A análise litogeoquímicas dos ortognaisses do Complexo Quirino demonstrou a existência de duas séries magmáticas distintas. A primeira pertencente à série cálcio-alcalina de alto-K apresenta uma composição mais expandida granítica-adamelítica/granodioritica/tonalítica e é correlacionável aos bt-ortognaisses e alguns hb-bt-ortognaisses. Os ortognaisses da série médio-K apresentam composição predominantemente tonalítica, sendo correlacionáveis à maioria dos hornblenda-biotita gnaisses. Enclaves lenticulares de metapiroxeníticos e anfibolíticos ocorrem em muitos afloramentos. Também ocorrem granitóides neoproterozóicos de composição graníticas a quartzo-monzoníticas O estudo isotópico de Sm-Nd e Sr demonstrou que os ortognaisses da série cálcio-alcalina de alto-K e aqueles da série cálcio-alcalina de médio-K possuem idades modelo TDM variando entre paleoproterozóicas a arqueanas, consistentes com dados U-Pb em zircão publicados na literatura. A série cálcio-alcalina de alto-K é mais antiga (2308 9,2 Ma a 2185 8 Ma) do que a série calcio-alcalina de médio-K (2169 3 a 2136 14 Ma) e a existência de zircões herdados com idades mínimas de 2846 Ma e 2981 Ma para série de médio-K e 3388 16 para série de alto-K. Os granitóides brasilianos possuem idades de cristalização neoproterozóica correlacionada a Orogênese Brasiliana (602 a 627 Ma) (Viana, 2008; Valladares et al., 2002)./Com base nos dados de Sr e Sm-Nd foi possível caracterizar 4 grupos distintos. Os grupos 1 e 2 são formados por rochas de idade paleoproterozóica (2,1 a 2,3 Ga) com idades modelo TDM variando de 2,9 e 3,4 Ga, εNd entre -8,1 e -5,8 e 87Sr/86Sr(t) = 0,694707 (Grupo 1) e TDM variando de 2,5 a 2,7 Ga, εNd entre -5,8 e -3,1 e 87Sr/86Sr(t) = 0,680824 (Grupo 2), formados no paleoproterozóico com contribuição de uma crosta arqueana. O grupo 3 é formado por rochas juvenis de idade paleoproterozóica, com idades de cristalização variando entre 2,0 e 2,2 Ga e com idades modelo TDM variando de 2,1 a 2,2 Ga e εNd entre + 1,5 e + 1,2. O grupo 4 é formado durante o neoproterozóico (645 Ma) por rochas possivelmente de idade paleoproterozóico com idades modelo TDM igual a 1,7 Ga e εNd igual a -8,3.
Resumo:
A área estudada está inserida no Domínio Transversal da Província Borborema. As unidades litoestratigráficas que compõem o embasamento paleoproterozócio (riaciano) são representadas por rochas ortoderivadas dos Complexos Salgadinho e Cabaceiras. Esses complexos foram individualizados de acordo com as suas diferenças composicionais, texturais e/ou geocronológicas. As rochas metassedimentares de idade paleoproterozóica (Orosiriano) foram interpretadas como constituintes do Complexo Sertânia. O magmatismo no estateriano é caracterizado por ortognaisses sienogranítcos da Suíte Carnoió-Caturité e por metanortositos do Complexo Metanortosítico Boqueirão. As unidades litoestratigráficas do Neoproterozóico são representadas por sucessões metassedimentares Criogenianas do Complexo Surubim e ortognaisses granodioríticos e sienograníticos do início do Ediacarano, denominados de Complexo Sumé e Ortognaisse Riacho de Santo Antônio, respectivamente. O magmatismo granítico do Ediacarano foi caracterizado pelo alojamento dos Plutons Inácio Pereira e Marinho. Os dados geocronológicos (U-Pb em zircão) obtidos indicam, no mínimo, o desenvolvimento de três eventos tectono-magmáticos. As idades de 2042 + 11Ma e 1996 + 13Ma obtidas nos ortoanfibolitos do Complexo Cabaceiras foram interpretadas como a idade de cristalização do protólito e metamorfismo, respectivamente. A idade de 1638 + 13Ma proveniente de hornblenda ortognaisse sienogranítico da Suíte Carnoió-Caturité foi interpretada como a idade de cristalização do protólito, marcando um evento magmático Estateriano de afinidade anorogênica. A idade de 550 + 3.1Ma encontrada em monzogranito porfirítico do Pluton Marinho é um registro do último evento magmático no final do Ediacarano, associado ao estágio tardio de desenvolvimento da Zona de Cisalhamento Coxixola. Os dados estruturais permitiram a individualização de três fases de deformação dúcteis, individualizadas como D1, D2 e D3. A fase D1 foi responsável pela geração de uma foliação S1, observada somente na charneira de dobras F2. O evento D2 é assinalado por uma tectônica contracional com transporte para NNW, observado a partir de bandas de cisalhamento assimétricas e dobras de arrasto em cortes paralelos a lineação de estiramento (L2x). Zonas de cisalhamento dúcteis de geometria e cinemática distintas desenvolveram-se durante a fase D3. As zonas de Cisalhamento Boa Vista, Carnoió e Congo estão orientadas na direção NE-SW e exibem cinemática sinistral em cortes paralelos à lineação de estiramento (L3x). As terminações meridionais dessas zonas de cisalhamento estão conectadas com a Zona de Cisalhamento Coxixola. Essa zona de cisalhamento, de direção WSW-ENE e cinemática destral, atravessa toda a área de estudo, com uma espessura média de rochas miloníticas de 300m. A Zona de Cisalhamento Inácio Pereira ocorre na porção leste da área de estudo, orientada na direção WNW-ESE. A análise geométrica e cinemática dessa zona de cisalhamento sugere uma evolução deformacional através de regime transpressivo oblíquo sinistral. O padrão anastomosado final resultante do desenvolvimento de todas as zonas de cisalhamento da área é relacionado à evolução estrutural de um sistema de zonas de cisalhamento dúcteis conjugadas.
Resumo:
A Suíte Intrusiva Santa Clara está inserida na Província Estanífera de Rondônia, na porção SW do Cráton Amazônico. Essa suíte intrusiva é composta pelos maciços Santa Clara, Oriente Velho, Oriente Novo, Manteiga-Sul, Manteiga-Norte, Jararaca, Carmelo, Primavera e das Antas. Os litotipos que perfazem a Suíte Santa Clara ocorrem hospedados nas rochas do Complexo Jamari, uma associação polideformada composta por gnaisses ortoderivados e paraderivados. Características observadas em campo e em análises petrográficas permitiram subdividir o Maciço Santa Clara em cinco fácies distintas: fácies porfirítica, fácies isotrópica, fácies fina, fácies piterlítica e fácies viborgítica. Os litotipos observados correspondem a hornblenda-biotita granitos e biotita granitos intermediários a ácidos, com composições médias semelhantes àquelas verificadas para sienogranitos e monzogranitos. Geoquimicamente, três magmas podem ser identificados. O magma menos evoluído corresponde às rochas das fácies porfirítica e equigranular, e o mais evoluído compreende as fácies de granulometria fina e piterlítica. A fácies viborgítica representa o terceiro líquido magmático, e aparentemente é diferente de todas as outras fácies em termos de aspectos de campo e geoquímica. A análise litogeoquímica indica que estes granitoides são subalcalinos, bastante empobrecidos em MgO e exibem caráter metaluminoso a fracamente peraluminoso. Os padrões de elementos-traços evidenciam que tais granitóides possuem alto conteúdo em elementos incompatíveis (Rb, Zr, Y, Ta, Ce) e ETR, com exceção do Eu. Além disso, também exibem leve enriquecimento em LILE, forte depleção em elementos como Sr e Ti, e leve empobrecimento de Ba, indicando que o fracionamento de minerais como plagioclásio e titanita foi importante na evolução do líquido magmático analisado. A anomalia negativa de Nb indica envolvimento de material crustal nos processos magmáticos que geraram estes granitoides. Os litotipos analisados possuem características típicas de granitos tipo-A ferroan, e as razões FeOt/MgO entre 4,27 e 26,22 sugerem tratar-se de uma série de granitos félsicos fracionados. Os padrões de ETR observados para os litotipos analisados exibem um considerável enriquecimento em ETRL, e anomalia negativa de Eu, sugerindo fracionamento de feldspato durante o processo de diferenciação do líquido magmático. Diagramas discriminantes de ambientes tectônicos sugerem que os litotipos do Maciço Intrusivo Santa Clara são típicos de ambiente intraplaca, do tipo-A2, isto é, associados a ambientes pós-colisionais/pós-orogênicos. As características isotópicas observadas para os granitoides do Maciço Santa Clara sugerem que os mesmos foram gerados a partir da fusão parcial de uma crosta inferior pré-existente. As idades U-Pb entre 1,07 e 1,06 Ga são compatíveis com um magmatismo ocorrido nos estágios finais da colagem do supercontinente Rodínia (1,2-1,0 Ga) e estágios finais do Ciclo Orogênico Sunsás-Aguapeí (1320-1100 Ma). Sugere-se ainda que na verdade o Maciço Santa Clara seja formado por uma coalescência das três intrusões graníticas que são representadas pelos três magmas anteriormente descritos.
Resumo:
O Domínio Costeiro integra o Terreno Oriental, no segmento central da Faixa Ribeira e abriga rochas ortoderivadas com afinidade de arcos magmáticos (Complexo Rio Negro, ca. 790-605 Ma). Os ortognaisses deste complexo possuem clara assinatura para ambientes de zonas de subducção, encaixados em rochas metassedimentares de alto grau, integrantes do Grupo São Fidélis. O conjunto acima descrito é ainda intrudido por várias de rochas granitóides sin a tardi- colisionais, relacionadas às várias etapas de desenvolvimento da Orogenia Brasiliana neste setor do orógeno (ca. 605-480 Ma). Idades U-Pb (LA-ICP-MS) em zircões detríticos de rochas quartzíticas do Grupo São Fidélis indicam um amplo espectro com modas significativas no Mesoproterozóico e Paleoproterozoico, além de zircões do Neoproterozóico e do Arqueano. Sinteticamente os resultados obtidos foram: a) Idades concordantes Arqueanas com ca. 2,85, 2,84 e 2,70 Ga; b) zircões Paleoproterozóicos (ca. 2,3 a 1,7 Ga), com máxima concentração em torno de ca. 2,2 Ga, representando a segunda maior moda; c) Idades Mesoproterozóicas (ca. 1,3 -1,1 Ga) com idades de espectro dominantes, com moda em ca. 1,5 Ga; d) Zircões Neoproterozóicos com idades de ca. 0,95-90 Ga e 0,86-0,61 Ga. Em vários grãos detríticos observou-se sobrecrescimento metamórfico em ca. 602-570 Ma. Dados U-Pb (LA-ICP-MS) obtidos para zircões para Ortognaisse Rio Grande e o Biotita Ortognaisse, intrudidos na unidade basal do Grupo São Fidélis, apresentam idades em ca. 620 Ma e são equivalentes ao período pré-colisional de geração de rochas do arco magmático Rio Negro. Combinando estas idades com os núcleos de zircões detríticos mais jovens, com assinatura do Arco Rio Negro em ca. 613 Ma, pode-se definir o intervalo máximo de sedimentação da unidade superior do Grupo São Fidélis no Neoproterozóico. Cristais de monazitas selecionadas para análise U-Pb (ID-TIMS) apresentam relações com os principais episódios tectono-metamórficos da Faixa Ribeira. Dois cristais de uma amostra quartzítica e dois do ortognaisse Rio Grande alinham-se em uma discórdia que gerou idade de 603 Ma, referente ao metamorfismo progressivo descrito na literatura, durante a Orogenia Brasiliana. Enquanto a idade concordante obtida em 535 Ma, adquirida em uma amostra quartzítica, é correspontente ao último metamorfismo colisional da Faixa Ribeira.
Resumo:
O Orógeno Ribeira representa um cinturão de dobramentos e empurrões, gerado no Neoproterozóico/Cambriano, durante a Orogênese Brasiliana, na borda sul/sudeste do Cráton do São Francisco e compreende quatro terrenos tectono-estratigráficos: 1) o Terreno Ocidental, interpretado como resultado do retrabalhamento do paleocontinente São Francisco, é constituído de duas escamas de empurrão de escala crustal (Domínios Andrelândia e Juiz de Fora); 2) o Terreno Oriental representa uma outra microplaca e abriga o Arco Magmático Rio Negro; 3) o Terreno Paraíba do Sul, que constitui-se na escama superior deste segmento da faixa; e 4) o Terreno Cabo Frio, cuja docagem foi tardia, ocupa pequena área no litoral norte do estado do Rio de Janeiro. Em todos os diferentes compartimentos do segmento central da Faixa Ribeira podem ser identificadas três unidades tectono-estratigráficas: 1) unidades pré-1,8 Ga. (ortognaisses e ortogranulitos do embasamento); 2) rochas metassedimentares pós-1,8 Ga; e 3) granitóides/charnockitóides brasilianos. O Complexo Mantiqueira é composto por ortognaisses migmatíticos, tonalíticos a graníticos, e anfibolitos associados, constitui o embasamento pré-1,8 Ga das rochas da Megasseqüência Andrelândia no domínio homônimo do Terreno Ocidental. Foram integrados 68 dados litogeoquímicos dentre ortognaisses e metabasitos do Complexo Mantiqueira. As rochas dessa unidade pertencem a duas séries distintas: série calcioalcalina (rochas intermediárias a ácidas); e série transicional (rochas básicas, ora de afinidade toleítica, ora alcalina). Com base em critérios petrológicos, análise quantitativa e em valores [La/Yb]N, verificou-se que o Complexo Mantiqueira é bastante heterogêneo, incluindo diversos grupos petrogeneticamente distintos. Dentre as rochas da série transicional, foram identificados 2 conjuntos: 1) rochas basálticas toleiíticas, com [La/Yb]N entre 2,13 e 4,72 (fontes do tipo E-MORB e/ou intraplaca);e 2) rochas basálticas de afinidade alcalina, com [La/Yb]N entre 11,79 e 22,78. As rochas da série calciolacalina foram agrupadas em cinco diferentes conjuntos: 1) ortognaisses migmatíticos quartzo dioríticos a tonalíticos, com [La/Yb]N entre 11,37 e 38,26; 2) ortognaisses bandados de composição quarzto diorítica a granodiorítica, com [La/Yb]N entre 4,35 e 9,28; 3) ortognaisses homogênos de composição tonalítica a granítica, com [La/Yb]N entre 16,57 e 38,59; 4) leucognaisses brancos de composição tonalítica/trondhjemítica a granítica, com [La/Yb]N entre 46,69 e 65,06; e 5) ortognaisse róseo porfiroclástico de composição tonalítica a granítica, com [La/Yb]N entre 82,70 e 171,36. As análises geocronológicas U-Pb SHRIMP foram realizadas no Research School of Earth Science (ANU/Canberra/Austrália). Foram obtidas idades paleoproterozóicas para as rochas das duas séries identificadas, interpretadas como a idade de cristalização dos protólitos magmáticos desses gnaisses e metabasitos. Os resultados obtidos mostram uma variação de idades de cristalização de 2139 35 a 2143,4 9,4, para as rochas da série transicional, e de 2126,4 8 a 2204,5 6,7, para aquelas da série calcioalcalina. Dentre todas as amostras estudadas, apenas a amostra JF-CM-516IV forneceu dados discordantes de idades arqueanas (292916 Ma), interpretados como dados de herança. Contudo, evidências dessa herança semelhantes a esta são observadas em outras amostras. Ambas as séries também apresentaram idades de metamorfismo neoproterozóico, no intervalo de 548 17 Ma a 590,5 7,7 Ma que é consistente com o metamorfismo M1 (entre 550 e 590 Ma), contemporâneo à colisão entre os Terrenos Ocidental e Oriental do setor central da Faixa Ribeira (Heilbron, 1993 e Heilbron et al., 1995).
Resumo:
Os granitoides do Domínio Cambuci, na região limítrofe entre os estados do Rio de Janeiro e Espírito Santo, foram separados em quatro principais grupos: (1) Complexo Serra da Bolívia (CSB) - Ortogranulitos e Ortognaisses Heterogêneos; Ortognaisse Cinza Foliado; e charnockitos da Região de Monte Verde (2) Leucogranitos/leucocharnockitos gnaissificados da Suíte São João do Paraíso (SSJP) (3) Granito Cinza Foliado (4) Leucogranito isotrópico. O CSB é caracterizado pelo magmatismo de caráter calcioalcalino do tipo I, oriundo em ambiente de arco vulcânico (Suíte Monte Verde) e retrabalhamento crustal (ortogranulitos leucocráticos). O Ortogranulito esverdeado fino, é considerado no presente estudo como rocha do embasamento para o Terreno Oriental, cristalizada durante o paleoproterozoico - Riaciano (2184,3 21 Ma) e recristalizada durante o evento metamórfico Brasiliano no neoproterozoico - Edicariano (607,2 1,5 Ma), cuja idade TDM é de 2936 Ma. O Ortogranulito leucocrático médio cristalizou-se no neoproterozoico Edicariano (entre 592 e 609 Ma) e idade TDM ca. 2100 Ma, ao qual apresenta registro de herança no paleoproterozoico. A Suíte Monte Verde caracteriza-se por um magmatismo calcioalcalino e a Suíte Córrego Fortaleza, por um magmatismo calcioalcalino de alto K, ambas com assinatura de arco magmático. Registram dois pulsos magmáticos, em no Neoproterozoico - Edicarano: um em 592 2 Ma, idade do charnoenderbito, com idade TDM 1797 Ma, e outro em 571,2 1,8 Ma (injeção de um charnockitoide). Para todas as rochas do CSB são registradas feições protomiloníticas, miloníticas e localmente ultramiloníticas. Os dados geoquímicos indicam que os granitoides da SSJP são da série calcioalcalina de alto K, gerados no Neoproterozoico (idades que variam desde 610,3 4,7 Ma até, 592,2 1,3 Ma. As idades TDM revelam valores discrepantes para duas amostras: 1918 Ma e 2415 Ma, sugerindo que tenham sido geradas de diferentes fontes. O Granito Cinza Foliado é da Série Shoshonítica, metaluminoso do tipo I e, de ambiência tectônica de granitos intraplaca. Entretanto, poderiam ter sido fomados em ambiente de arco cordilheirano, havendo contaminação de outras fontes crustais. Fato este pode ser confirmado pelas as idades TDM calculadas ≈ 1429 1446 Ma. O Leucogranito isotrópico ocorre em forma de diques de direção NW, possui textura maciça e é inequigranular. Dados geoquímicos revelam que são granitoides metaluminosos do tipo I da série shoshonítica, e, de acordo com a ambiência tectônica, são granitos intraplaca. O Leucogranito Isotrópico representa o magmatismo pós-colisional ao qual ocorreu entre 80 a 90 Ma de anos após o término do evento colisional na região central da Faixa Ribeira. O Leucogranito Issotrópico cristalizou-se no cambriano (512,3 3,3 Ma e 508,6 2,2 Ma) e com idades TDM ca. 1900
Resumo:
The Otocephala, a clade including ostariophysan and clupeomorph telcosts, represents about a quarter of total fish species diversity, with about 1000 gencra and more than 7000 species. A series of recent papers have defended that the origin of this clade and of its major groups may be significantly older than the oldest fossils of each of these groups suggest. Some of these recent papers explicitly defend a Pangean origin for some otocephalan groups Such as the Siluriformes or Cypriniformes. To know whether or not the otocephalans as a whole, and particularly the mainly freshwater, cosmopolitan otophysans could have originated before the splitting of the Pangean Supercontinent is of extreme importance, since otophysan fishes are among the most useful animal groups for the determination of historical continental relationships. In the present work we examined divergence times for each major otocephalan group by an analysis of complete mtDNA sequences, in order to investigate if these divergence times support the hypotheses advanced in recent studies. The complete mtDNA sequences of nine representative non-otocephalan fish species and of twenty-one representative otocephalan species was compared. The present study is thus, among the studies dealing with molecular divergence times of telcosts, the one in which a greater number of otocephalan species are included. The divergence times obtained support that the major otocephalan groups had a much older origin than the oldest fossil records available for these groups suggest. The origin of the Otocephala is estimated as having occurred about 282 Mya, with the origin of the Otophysi being estimated at about 251 Mya. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Heavy mineral assemblages, chemical compositions of diagnostic heavy minerals such as garnet and tourmaline, and U-Pb ages and Hf isotopic compositions of zircons are very effective means to determine sediment provenance. An integrated application of the above provides insight on the lithologies, crystallization ages and crustal formation ages of the parent magma of sediment source areas. As a result, the locations and characteristics of potential source areas can be constrained and contributions of different source regions may be evaluated. In addition, the study provides evidence for the magmatic and tectonic history of source areas using a novel approach. The heavy mineral assemblages, and chemical compositions of detrital garnets and tourmalines, U-Pb ages and Hf isotopic compositions of zircons for sand and loess samples deposited since the Last Glacial Maximum (LGM) from the Hulunbeier, Keerqin and Hunshandake sandlands were analyzed and compared to those of central-southern Mongolia, the central Tarim and surrounding potential source areas, the Central Asian Orogenic Belt (CAOB) and North China Craton (NCC). The following remarks on provenance and tectonic history can be made: 1. The source compositional characteristics of the Hulunbeier, Keerqin and Hunshandake sandlands are similar. They are derived from the CAOB and NCC whose contributions for the Keerqin and Hunshandake sandland are about 50%. For the Hulunbeier sandland it is somewhat less, about 40%. 2. Loesses around of the sandlands have the identical source signiture as the sands, implying that they are sorted by the same wind regime. 3. The source characteristics of the present and LGM sands are the same, providing direct evidence that the present sands originated from the reworking of LGM sands. 4. The provenance characteristics of the three sandlands differ from those of the Tarim. As a result, the possibility that the three eastern sandlands were sourced from the Taklimakan desert can be ruled out. 5. The source compositions of sand samples derived from the CAOB indicate that the occurrence of Archean and Paleoproterozoic metamorphic basement rocks is limited and continuous subduction-accretion events from the Neoproterozoic to the Mesozoic occurred. This implies that the CAOB is a orogenic collage belt similar to the present day southwest-Pacific, and formed by the amalgamation of small forearc and backarc ocean basins occurring between island arcs and microcontinents during continuous collision and accretion. The Hf isotopic signitures of detrital zircons indicate that large amounts of juvenile mantle materials were added to the CAOB crust during the Phanerozoic.
Resumo:
The Huade Group, consisting of low-grade and un-metamorphosed sedimentary rocks with no volcanic interlayer, is located at the northern margin of the North China craton and adjoining the south part of the Central Asian Orogenic Belt. It is east to the Paleo- to Meso-Proterozoic Bayan Obo and Zhaertai-Langshan rifts and northwest to the Paleo- to Neo-proterozoic Yanshan aulacogen, in which the typical Changcheng, Jixian and Qingbaikou systems are developed. The Huade Group are mainly composed of pebbly sandstones, sandstones, greywackes,shales,calc-silicate rocks and limestones, partly undergoing low-grade metamorphism and being changed to meta-sandstones, schists, phyllites, slates and crystalline limestones or marbles. The stratigraphic sequences show several cycles of deposition. Each of them developed coarse clastic rocks – interbedded fine clastic rocks and pelites from bottom upward or from coarse clastic rocks to interbedded fine clastic rocks and pelites to carbonate rocks. The Tumen Group outcrop sporadically around or west to the Tanlu faults in western Shandong. They are mainly composed of pebbly sandstones, sandstones, shales and limestones. This thesis deals with the characteristics of petrology, geochemistry and sedimentary of the Huade Group and the Tumen Group, and discusses the LA-ICP-MS and SIMS U-Pb ages, Hf isotope and trace element composition of the detrital zircons from 5 meta-sandstone samples of the Huade Group and 3 sandstone samples of the Tumen Group. The age populations of the detrital zircons from the Huade Group are mainly ~2.5 Ga and ~1.85 Ga, and there are also minor peaks at ~2.0 Ga, ~1.92 Ga and ~1.73 Ga. Most of the detrital zircon grains of 2.47-2.57 Ga and a few of 1.63-2.03 Ga have Hf crust model ages of 2.7-3.0 Ga, and most of the detrital zircon grains of 1.63-2.03 Ga have Hf crust model ages of 2.35-2.7 Ga, with a peak at 2.54 Ga. The main age peaks of the detrital zircons from the Tumen Group are ~2.5 Ga、~1.85 Ga, 1.57 Ga, 1.5 Ga, 1.33 Ga and 1.2 Ga. Different samples from the Tumen Group have distinct Hf isotopic characteristics. Detrital zircon grains of ~2.52 Ga from one sandstone sample have 2.7-3.2 Ga Hf crust model ages, whereas zircon grains of 1.73-2.02 Ga and 2.31-2.68 Ga from another sample have Hf crust model ages of 2.95-3.55 Ga. Detrital zircon grains of Mesoproterozoic ages have Paleoproterozoic (1.7-2.25 Ga) crust model ages. Through detailed analyses of the detrital zircons from the Huade and Tumen Group and comparison with those from the sedimentary rocks of similar sedimentary ages, the thesis mainly reaches the following conclusions: 1. The youngest age peaks of the detrital zircons of 1.73 Ga constrains the sedimentary time of the Huade Group from late Paleoproterozoic to Mesoproterozoic. 2. The age peaks of detrital zircons of the Huade Group correspond to the significant Precambrian tectonic-thermal events of the North China craton. The basement of the North China craton is the main provenance of the Huade Group, of which the intermediate to high grade metamorphic sedimentary rocks are dominant and provide mainly 1.85-1.92 Ga sediments. 3. The Huade basin belongs to the North China craton and it is suggested that the northern boundary of the North China craton should be north to the Huade basin. 4. The stratigraphic characteristics indicate the Huade Group formed in a stable shallow-hypabyssal sedimentary basin. The rock association and sedimentary time of the Huade Group are similar to those of the Banyan Obo Group and the Zhaertai Group, and they commonly constitute late Paleoproterozoic to Mesoproterozoic continental margin basins along the northern margin of the North China craton. 5. The continental margin basins would have initiated coeval with the Yanshan and Xiong’er aulacogens. 6. The ages of the detrital zircons from the Tumen Group and the Penglai Group at Shandong peninsula and the Yushulazi Group at south Liaoning are similar, so their sedimentary time is suggested to be Neoproterozoic,coeval with the Qingbaikou system. The detrital zircon ages of 1.0-1.2 Ga from the Tumen Group, the Penglai Group and the Yushulazi Group indicate that there have being 1.0-1.2 Ga magmatic activities at the eastern margin of the North China craton. 7. The U-Pb age populations of the detrital zircons from the late Paleoproterozoic to Neoproterozoic sedimentary rocks suggest that the main Precambrian tectonic-thermal events of the North China craton happened at ~2.5 Ga and ~1.85 Ga. But the events at 2.7 Ga and 1.2 Ga are also of great significance. Hf isotope characteristics indicate that the significant crust growth periods of the North China craton are 2.7-3.0 Ga and ~2.5 Ga.