830 resultados para PACKET LOSS
Cross-layer design for MIMO systems over spatially correlated and keyhole Nakagami-m fading channels
Resumo:
Cross-layer design is a generic designation for a set of efficient adaptive transmission schemes, across multiple layers of the protocol stack, that are aimed at enhancing the spectral efficiency and increasing the transmission reliability of wireless communication systems. In this paper, one such cross-layer design scheme that combines physical layer adaptive modulation and coding (AMC) with link layer truncated automatic repeat request (T-ARQ) is proposed for multiple-input multiple-output (MIMO) systems employing orthogonal space--time block coding (OSTBC). The performance of the proposed cross-layer design is evaluated in terms of achievable average spectral efficiency (ASE), average packet loss rate (PLR) and outage probability, for which analytical expressions are derived, considering transmission over two types of MIMO fading channels, namely, spatially correlated Nakagami-m fading channels and keyhole Nakagami-m fading channels. Furthermore, the effects of the maximum number of ARQ retransmissions, numbers of transmit and receive antennas, Nakagami fading parameter and spatial correlation parameters, are studied and discussed based on numerical results and comparisons. Copyright © 2009 John Wiley & Sons, Ltd.
Resumo:
Using a cross-layer approach, two enhancement techniques applied for adaptive modulation and coding (AMC) with truncated automatic repeat request (T-ARQ) are investigated, namely, aggressive AMC (A-AMC) and constellation rearrangement (CoRe). Aggressive AMC selects the appropriate modulation and coding schemes (MCS) to achieve higher spectral efficiency, profiting from the feasibility of using different MCSs for retransmitting a packet, whereas in the CoRe-based AMC, retransmissions of the same data packet are performed using different mappings so as to provide different degrees of protection to the bits involved, thus achieving mapping diversity gain. The performance of both schemes is evaluated in terms of average spectral efficiency and average packet loss rate, which are derived in closed-form considering transmission over Nakagami-m fading channels. Numerical results and comparisons are provided. In particular, it is shown that A-AMC combined with T-ARQ yields higher spectral efficiency than the AMC-based conventional scheme while keeping the achieved packet loss rate closer to the system's requirement, and that it can achieve larger spectral efficiency objectives than that of the scheme using AMC along with CoRe.
Resumo:
Internet protocol TV (IPTV) is predicted to be the key technology winner in the future. Efforts to accelerate the deployment of IPTV centralized model which is combined of VHO, encoders, controller, access network and Home network. Regardless of whether the network is delivering live TV, VOD, or Time-shift TV, all content and network traffic resulting from subscriber requests must traverse the entire network from the super-headend all the way to each subscriber's Set-Top Box (STB).IPTV services require very stringent QoS guarantees When IPTV traffic shares the network resources with other traffic like data and voice, how to ensure their QoS and efficiently utilize the network resources is a key and challenging issue. For QoS measured in the network-centric terms of delay jitter, packet losses and bounds on delay. The main focus of this thesis is on the optimized bandwidth allocation and smooth datatransmission. The proposed traffic model for smooth delivering video service IPTV network with its QoS performance evaluation. According to Maglaris et al [5] First, analyze the coding bit rate of a single video source. Various statistical quantities are derived from bit rate data collected with a conditional replenishment inter frame coding scheme. Two correlated Markov process models (one in discrete time and one incontinuous time) are shown to fit the experimental data and are used to model the input rates of several independent sources into a statistical multiplexer. Preventive control mechanism which is to be include CAC, traffic policing used for traffic control.QoS has been evaluated of common bandwidth scheduler( FIFO) by use fluid models with Markovian queuing method and analysis the result by using simulator andanalytically, Which is measured the performance of the packet loss, overflow and mean waiting time among the network users.
Resumo:
IPTV is now offered by several operators in Europe, US and Asia using broadcast video over private IP networks that are isolated from Internet. IPTV services rely ontransmission of live (real-time) video and/or stored video. Video on Demand (VoD)and Time-shifted TV are implemented by IP unicast and Broadcast TV (BTV) and Near video on demand are implemented by IP multicast. IPTV services require QoS guarantees and can tolerate no more than 10-6 packet loss probability, 200 ms delay, and 50 ms jitter. Low delay is essential for satisfactory trick mode performance(pause, resume,fast forward) for VoD, and fast channel change time for BTV. Internet Traffic Engineering (TE) is defined in RFC 3272 and involves both capacity management and traffic management. Capacity management includes capacityplanning, routing control, and resource management. Traffic management includes (1)nodal traffic control functions such as traffic conditioning, queue management, scheduling, and (2) other functions that regulate traffic flow through the network orthat arbitrate access to network resources. An IPTV network architecture includes multiple networks (core network, metronetwork, access network and home network) that connects devices (super head-end, video hub office, video serving office, home gateway, set-top box). Each IP router in the core and metro networks implements some queueing and packet scheduling mechanism at the output link controller. Popular schedulers in IP networks include Priority Queueing (PQ), Class-Based Weighted Fair Queueing (CBWFQ), and Low Latency Queueing (LLQ) which combines PQ and CBWFQ.The thesis analyzes several Packet Scheduling algorithms that can optimize the tradeoff between system capacity and end user performance for the traffic classes. Before in the simulator FIFO,PQ,GPS queueing methods were implemented inside. This thesis aims to implement the LLQ scheduler inside the simulator and to evaluate the performance of these packet schedulers. The simulator is provided by ErnstNordström and Simulator was built in Visual C++ 2008 environmentand tested and analyzed in MatLab 7.0 under windows VISTA.
Resumo:
Internet protocol TV (IPTV) is predicted to be the key technology winner in the future. Efforts to accelerate the deployment of IPTV centralized model which is combined of VHO, encoders, controller, access network and Home network. Regardless of whether the network is delivering live TV, VOD, or Time-shift TV, all content and network traffic resulting from subscriber requests must traverse the entire network from the super-headend all the way to each subscriber's Set-Top Box (STB). IPTV services require very stringent QoS guarantees When IPTV traffic shares the network resources with other traffic like data and voice, how to ensure their QoS and efficiently utilize the network resources is a key and challenging issue. For QoS measured in the network-centric terms of delay jitter, packet losses and bounds on delay. The main focus of this thesis is on the optimized bandwidth allocation and smooth data transmission. The proposed traffic model for smooth delivering video service IPTV network with its QoS performance evaluation. According to Maglaris et al [5] first, analyze the coding bit rate of a single video source. Various statistical quantities are derived from bit rate data collected with a conditional replenishment inter frame coding scheme. Two correlated Markov process models (one in discrete time and one in continuous time) are shown to fit the experimental data and are used to model the input rates of several independent sources into a statistical multiplexer. Preventive control mechanism which is to be including CAC, traffic policing used for traffic control. QoS has been evaluated of common bandwidth scheduler( FIFO) by use fluid models with Markovian queuing method and analysis the result by using simulator and analytically, Which is measured the performance of the packet loss, overflow and mean waiting time among the network users.
Resumo:
The use of QoS parameters to evaluate the quality of service in a mesh network is essential mainly when providing multimedia services. This paper proposes an algorithm for planning wireless mesh networks in order to satisfy some QoS parameters, given a set of test points (TPs) and potential access points (APs). Examples of QoS parameters include: probability of packet loss and mean delay in responding to a request. The proposed algorithm uses a Mathematical Programming model to determine an adequate topology for the network and Monte Carlo simulation to verify whether the QoS parameters are being satisfied. The results obtained show that the proposed algorithm is able to find satisfactory solutions.
Resumo:
This paper presents simulation results of the DNP3 communication protocol over a TCP/IP network, for Smart Grid applications. The simulation was performed using the NS-2 network simulator. This study aimed to use the simulation to verify the performance of the DNP3 protocol in a heterogeneous LAN. Analyzing the results it was possible to verify that the DNP3 over a heterogeneous traffic network, with communication channel capacity between 60 and 85 percent, it works well with low packet loss and low delay, however, with traffic values upper 85 percent, the DNP3 usage becomes unfeasible because the information lost, re-transmissions and latency are significantly increased. © 2013 IEEE.
Resumo:
Este trabalho faz uma análise de desempenho de aplicações triple play através da tecnologia Power Line Communication, fazendo uma abordagem direcionada para qualidade de serviço e qualidade de experiência. Apresenta resultados obtidos em cenários residenciais onde o uso desta tecnologia como última milha mostra-se uma solução passível de implementação diante dos testes realizados com transmissões de chamadas VoIP, transmissões de vídeo em alta definição e dados. O conceito de rede doméstica, interligando todos os pontos de uma casa, vem representando um novo rumo na definição de um padrão global, no qual a transmissão de dados por meio da fiação elétrica será uma das tecnologias empregadas e de maior destaque. Também será mostrado o desempenho das métricas avaliadas como jitter, largura de banda, perda de pacotes, PSNR, MOS, VQM, SSIM e suas correlações.
Resumo:
ABSTRACT: The femtocell concept aims to combine fixed-line broadband access with mobile telephony using the deployment of low-cost, low-power third and fourth generation base stations in the subscribers' homes. While the self-configuration of femtocells is a plus, it can limit the quality of service (QoS) for the users and reduce the efficiency of the network, based on outdated allocation parameters such as signal power level. To this end, this paper presents a proposal for optimized allocation of users on a co-channel macro-femto network, that enable self-configuration and public access, aiming to maximize the quality of service of applications and using more efficiently the available energy, seeking the concept of Green networking. Thus, when the user needs to connect to make a voice or a data call, the mobile phone has to decide which network to connect, using the information of number of connections, the QoS parameters (packet loss and throughput) and the signal power level of each network. For this purpose, the system is modeled as a Markov Decision Process, which is formulated to obtain an optimal policy that can be applied on the mobile phone. The policy created is flexible, allowing different analyzes, and adaptive to the specific characteristics defined by the telephone company. The results show that compared to traditional QoS approaches, the policy proposed here can improve energy efficiency by up to 10%.
Resumo:
The proliferation of multimedia content and the demand for new audio or video services have fostered the development of a new era based on multimedia information, which allowed the evolution of Wireless Multimedia Sensor Networks (WMSNs) and also Flying Ad-Hoc Networks (FANETs). In this way, live multimedia services require realtime video transmissions with a low frame loss rate, tolerable end-to-end delay, and jitter to support video dissemination with Quality of Experience (QoE) support. Hence, a key principle in a QoE-aware approach is the transmission of high priority frames (protect them) with a minimum packet loss ratio, as well as network overhead. Moreover, multimedia content must be transmitted from a given source to the destination via intermediate nodes with high reliability in a large scale scenario. The routing service must cope with dynamic topologies caused by node failure or mobility, as well as wireless channel changes, in order to continue to operate despite dynamic topologies during multimedia transmission. Finally, understanding user satisfaction on watching a video sequence is becoming a key requirement for delivery of multimedia content with QoE support. With this goal in mind, solutions involving multimedia transmissions must take into account the video characteristics to improve video quality delivery. The main research contributions of this thesis are driven by the research question how to provide multimedia distribution with high energy-efficiency, reliability, robustness, scalability, and QoE support over wireless ad hoc networks. The thesis addresses several problem domains with contributions on different layers of the communication stack. At the application layer, we introduce a QoE-aware packet redundancy mechanism to reduce the impact of the unreliable and lossy nature of wireless environment to disseminate live multimedia content. At the network layer, we introduce two routing protocols, namely video-aware Multi-hop and multi-path hierarchical routing protocol for Efficient VIdeo transmission for static WMSN scenarios (MEVI), and cross-layer link quality and geographical-aware beaconless OR protocol for multimedia FANET scenarios (XLinGO). Both protocols enable multimedia dissemination with energy-efficiency, reliability and QoE support. This is achieved by combining multiple cross-layer metrics for routing decision in order to establish reliable routes.
Resumo:
The use of wireless local area networks, called WLANs, as well as the proliferation of the use of multimedia applications have grown rapidly in recent years. Some factors affect the quality of service (QoS) received by the user and interference is one of them. This work presents strategies for planning and performance evaluation through an empirical study of the QoS parameters of a voice over Internet Protocol (VoIP) application in an interference network, as well as the relevance in the design of wireless networks to determine the coverage area of an access point, taking into account several parameters such as power, jitter, packet loss, delay, and PMOS. Another strategy is based on a hybrid approach that considers measuring and Bayesian inference applied to wireless networks, taking into consideration QoS parameters. The models take into account a cross layer vision of networks, correlating aspects of the physical environment, on the signal propagation (power or distance) with aspects of VoIP applications (e.g., jitter and packet loss). Case studies were carried out for two indoor environments and two outdoor environments, one of them displaying main characteristics of the Amazon region (e.g., densely arboreous environments). This last test bed was carried out in a real system because the Government of the State of Pará has a digital inclusion program called NAVEGAPARÁ.
Resumo:
There is a wide range of telecommunications services that transmit voice, video and data through complex transmission networks and in some cases, the service has not an acceptable quality level for the end user. In this sense the study of methods for assessing video quality and voice have a very important role. This paper presents a classification scheme, based on different criteria, of the methods and metrics that are being studied in recent years. This paper presents how the video quality is affected by degradation in the transmission channel in two kinds of services: Digital TV (ISDB-TB) due the fading in the air interface and video streaming service on an IP network due packet loss. For Digital TV tests was set up a scenario where the digital TV transmitter is connected to an RF channel emulator, where are inserted different fading models and at the end, the videos are saved in a mobile device. The tests of streaming video were performed in an isolated scenario of IP network, which are scheduled several network conditions, resulting in different qualities of video reception. The video quality assessment is performed using objective assessment methods: PSNR, SSIM and VQM. The results show how the losses in the transmission channel affects the quality of end-user experience on both services studied.
Resumo:
Random access (RA) protocols are normally used in a satellite networks for initial terminal access and are particularly effective since no coordination is required. On the other hand, contention resolution diversity slotted Aloha (CRDSA), irregular repetition slotted Aloha (IRSA) and coded slotted Aloha (CSA) has shown to be more efficient than classic RA schemes as slotted Aloha, and can be exploited also when short packets transmissions are done over a shared medium. In particular, they relies on burst repetition and on successive interference cancellation (SIC) applied at the receiver. The SIC process can be well described using a bipartite graph representation and exploiting tools used for analyze iterative decoding. The scope of my Master Thesis has been to described the performance of such RA protocols when the Rayleigh fading is taken into account. In this context, each user has the ability to correctly decode a packet also in presence of collision and when SIC is considered this may result in multi-packet reception. Analysis of the SIC procedure under Rayleigh fading has been analytically derived for the asymptotic case (infinite frame length), helping the analysis of both throughput and packet loss rates. An upper bound of the achievable performance has been analytically obtained. It can be show that in particular channel conditions the throughput of the system can be greater than one packets per slot which is the theoretical limit of the Collision Channel case.
Resumo:
To interconnect a wireless sensor network (WSN) to the Internet, we propose to use TCP/IP as the standard protocol for all network entities. We present a cross layer designed communication architecture, which contains a MAC protocol, IP, a new protocol called Hop-to-Hop Reliability (H2HR) protocol, and the TCP Support for Sensor Nodes (TSS) protocol. The MAC protocol implements the MAC layer of beacon-less personal area networks (PANs) as defined in IEEE 802.15.4. H2HR implements hop-to-hop reliability mechanisms. Two acknowledgment mechanisms, explicit and implicit ACK are supported. TSS optimizes using TCP in WSNs by implementing local retransmission of TCP data packets, local TCP ACK regeneration, aggressive TCP ACK recovery, congestion and flow control algorithms. We show that H2HR increases the performance of UDP, TCP, and RMST in WSNs significantly. The throughput is increased and the packet loss ratio is decreased. As a result, WSNs can be operated and managed using TCP/IP.
Resumo:
Mobile multimedia ad hoc services run on dynamic topologies due to node mobility or failures and wireless channel impairments. A robust routing service must adapt to topology changes with the aim of recovering or maintaining the video quality level and reducing the impact of the user's experience. In those scenarios, beacon-less Opportunistic Routing (OR) increases the robustness by supporting routing decisions in a completely distributed manner based on protocol-specific characteristics. However, the existing beacon-less OR approaches do not efficiently combine multiple metrics for forwarding selection, which cause higher packet loss rate, and consequently reduce the video quality level. In this paper, we assess the robustness and reliability of our recently developed OR protocol under node failures, called cross-layer Link quality and Geographical-aware OR protocol (LinGO). Simulation results show that LinGO achieves multimedia dissemination with QoE support and robustness in scenarios with dynamic topologies.