944 resultados para P300 event-related potential


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives Ecstasy is a recreational drug whose active ingredient, 3,4-methylenedioxymethamphetamine (MDMA), acts predominantly on the serotonergic system. Although MDMA is known to be neurotoxic in animals, the long-term effects of recreational Ecstasy use in humans remain controversial but one commonly reported consequence is mild cognitive impairment particularly affecting verbal episodic memory. Although event-related potentials (ERPs) have made significant contributions to our understanding of human memory processes, until now they have not been applied to study the long-term effects of Ecstasy. The aim of this study was to examine the effects of past Ecstasy use on recognition memory for both verbal and non-verbal stimuli using ERPs. Methods We compared the ERPs of 15 Ecstasy/polydrug users with those of 14 cannabis users and 13 non-illicit drug users as controls. Results Despite equivalent memory performance, Ecstasy/polydrug users showed an attenuated late positivity over left parietal scalp sites, a component associated with the specific memory process of recollection. Conlusions This effect was only found in the word recognition task which is consistent with evidence that left hemisphere cognitive functions are disproportionately affected by Ecstasy, probably because the serotonergic system is laterally asymmetrical. Experimentally, decreasing central serotonergic activity through acute tryptophan depletion also selectively impairs recollection, and this too suggests the importance of the serotonergic system. Overall, our results suggest that Ecstasy users, who also use a wide range of other drugs, show a durable abnormality in a specific ERP component thought to be associated with recollection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The current research examined the influence of ingroup/outgroup categorization on brain event-related potentials measured during perceptual processing of own- and other-race faces. White participants performed a sequential matching task with upright and inverted faces belonging either to their own race (White) or to another race (Black) and affiliated with either their own university or another university by a preceding visual prime. Results demonstrated that the right-lateralized N170 component evoked by test faces was modulated by race and by social category: the N170 to own-race faces showed a larger inversion effect (i.e., latency delay for inverted faces) when the faces were categorized as other-university rather than own-university members; the N170 to other-race faces showed no modulation of its inversion effect by university affiliation. These results suggest that neural correlates of structural face encoding (as evidenced by the N170 inversion effects) can be modulated by both visual (racial) and nonvisual (social) ingroup/outgroup status. © 2014 © 2014 Taylor & Francis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of spatial attention and part-whole configuration on recognition of repeated objects were investigated with behavioral and event-related potential (ERP) measures. Short-term repetition effects were measured for probe objects as a function of whether a preceding prime object was shown as an intact image or coarsely scrambled (split into two halves) and whether or not it had been attended during the prime display. In line with previous behavioral experiments, priming effects were observed from both intact and split primes for attended objects, but only from intact (repeated same-view) objects when they were unattended. These behavioral results were reflected in ERP waveforms at occipital-temporal locations as more negative-going deflections for repeated items in the time window between 220 and 300 ms after probe onset (N250r). Attended intact images showed generally more enhanced repetition effects than split ones. Unattended images showed repetition effects only when presented in an intact configuration, and this finding was limited to the right-hemisphere electrodes. Repetition effects in earlier (before 200 ms) time-windows were limited to attended conditions at occipito-temporal sites (N1), a component linked to the encoding of object structure, while repetition effects at central locations during the same time window (P150) were found only from objects repeated in the same intact configuration—both previously attended and unattended probe objects. The data indicate that view-generalization is mediated by a combination of analytic (part-based) representations and automatic view-dependent representations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study we set out to dissociate the developmental time course of automatic symbolic number processing and cognitive control functions in grade 1-3 British primary school children. Event-related potential (ERP) and behavioral data were collected in a physical size discrimination numerical Stroop task. Task-irrelevant numerical information was processed automatically already in grade 1. Weakening interference and strengthening facilitation indicated the parallel development of general cognitive control and automatic number processing. Relationships among ERP and behavioral effects suggest that control functions play a larger role in younger children and that automaticity of number processing increases from grade 1 to 3.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Mismatch Negativity (MMN) has been characterised as a ‘pre-attentive’ component of an Event-Related Potential (ERP) that is related to discriminatory processes. Although well established in the auditory domain, characteristics of the MMN are less well characterised in the visual domain. The five main studies presented in this thesis examine visual cortical processing using event-related potentials. Novel methodologies have been used to elicit visual detection and discrimination components in the absence of a behavioural task. Developing paradigms in which a behavioural task is not required may have important clinical applications for populations, such as young children, who cannot comply with the demands of an active task. The ‘pre-attentive’ nature of visual MMN has been investigated by modulating attention. Generators and hemispheric lateralisation of visual MMN have been investigated by using pertinent clinical groups. A three stimulus visual oddball paradigm was used to explore the elicitation of visual discrimination components to a change in the orientation of stimuli in the absence of a behavioural task. Monochrome stimuli based on pacman figures were employed that differed from each other only in terms of the orientation of their elements. One such stimulus formed an illusory figure in order to capture the participant’s attention, either in place of, or alongside, a behavioural task. The elicitation of a P3a to the illusory figure but not to the standard or deviant stimuli provided evidence that the illusory figure captured attention. A visual MMN response was recorded in a paradigm with no task demands. When a behavioural task was incorporated into the paradigm, a P3b component was elicited consistent with the allocation of attentional resources to the task. However, visual discrimination components were attenuated revealing that the illusory figure was unable to command all attentional resources from the standard deviant transition. The results are the first to suggest that the visual MMN is modulated by attention. Using the same three stimulus oddball paradigm, generators of visual MMN were investigated by recording potentials directly from the cortex of an adolescent undergoing pre-surgical evaluation for resection of a right anterior parietal lesion. To date no other study has explicitly recorded activity related to the visual MMN intracranially using an oddball paradigm in the absence of a behavioural task. Results indicated that visual N1 and visual MMN could be temporally and spatially separated, with visual MMN being recorded more anteriorly than N1. The characteristic abnormality in retinal projections in albinism afforded the opportunity to investigate each hemisphere in relative isolation and was used, for the first time, as a model to investigate lateralisation of visual MMN and illusory contour processing. Using the three stimulus oddball paradigm, no visual MMN was elicited in this group, and so no conclusions regarding the lateralisation of visual MMN could be made. Results suggested that both hemispheres were equally capable of processing an illusory figure. As a method of presenting visual test stimuli without conscious perception, a continuous visual stream paradigm was developed that used a briefly presented checkerboard stimulus combined with masking for exploring stimulus detection below and above subjective levels of perception. A correlate of very early cortical processing at a latency of 60-80 ms (CI) was elicited whether stimuli were reported as seen or unseen. Differences in visual processing were only evident at a latency of 90 ms (CII) implying that this component may represent a correlate of visual consciousness/awareness. Finally, an oddball sequence was introduced into the visual stream masking paradigm to investigate whether visual MMN responses could be recorded without conscious perception. The stimuli comprised of black and white checkerboard elements differing only in terms of their orientation to form an x or a +. Visual MMN was not recorded when participants were unable to report seeing the stimulus. Results therefore suggest that behavioural identification of the stimuli was required for the elicitation of visual MMN and that visual MMN may require some attentional resources. On the basis of these studies it is concluded that visual MMN is not entirely independent of attention. Further, the combination of clinical and non-clinical investigations provides a unique opportunity to study the characterisation and localisation of putative mechanisms related to conscious and non-conscious visual processing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Non-invasive brain imaging techniques often contrast experimental conditions across a cohort of participants, obfuscating distinctions in individual performance and brain mechanisms that are better characterised by the inter-trial variability. To overcome such limitations, we developed topographic analysis methods for single-trial EEG data [1]. So far this was typically based on time-frequency analysis of single-electrode data or single independent components. The method's efficacy is demonstrated for event-related responses to environmental sounds, hitherto studied at an average event-related potential (ERP) level. Methods: Nine healthy subjects participated to the experiment. Auditory meaningful sounds of common objects were used for a target detection task [2]. On each block, subjects were asked to discriminate target sounds, which were living or man-made auditory objects. Continuous 64-channel EEG was acquired during the task. Two datasets were considered for each subject including single-trial of the two conditions, living and man-made. The analysis comprised two steps. In the first part, a mixture of Gaussians analysis [3] provided representative topographies for each subject. In the second step, conditional probabilities for each Gaussian provided statistical inference on the structure of these topographies across trials, time, and experimental conditions. Similar analysis was conducted at group-level. Results: Results show that the occurrence of each map is structured in time and consistent across trials both at the single-subject and at group level. Conducting separate analyses of ERPs at single-subject and group levels, we could quantify the consistency of identified topographies and their time course of activation within and across participants as well as experimental conditions. A general agreement was found with previous analysis at average ERP level. Conclusions: This novel approach to single-trial analysis promises to have impact on several domains. In clinical research, it gives the possibility to statistically evaluate single-subject data, an essential tool for analysing patients with specific deficits and impairments and their deviation from normative standards. In cognitive neuroscience, it provides a novel tool for understanding behaviour and brain activity interdependencies at both single-subject and at group levels. In basic neurophysiology, it provides a new representation of ERPs and promises to cast light on the mechanisms of its generation and inter-individual variability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Event related potential (ERP) analysis is one of the most widely used methods in cognitive neuroscience research to study the physiological correlates of sensory, perceptual and cognitive activity associated with processing information. To this end information flow or dynamic effective connectivity analysis is a vital technique to understand the higher cognitive processing under different events. In this paper we present a Granger causality (GC)-based connectivity estimation applied to ERP data analysis. In contrast to the generally used strictly causal multivariate autoregressive model, we use an extended multivariate autoregressive model (eMVAR) which also accounts for any instantaneous interaction among variables under consideration. The experimental data used in the paper is based on a single subject data set for erroneous button press response from a two-back with feedback continuous performance task (CPT). In order to demonstrate the feasibility of application of eMVAR models in source space connectivity studies, we use cortical source time series data estimated using blind source separation or independent component analysis (ICA) for this data set.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The information presented in this paper demonstrates the author's experience in previews cross-sectional studies conducted in Brazil, in comparison with the current literature. Over the last 10 years, auditory evoked potential (AEP) has been used in children with learning disabilities. This method is critical to analyze the quality of the processing in time and indicates the specific neural demands and circuits of the sensorial and cognitive process in this clinical population. Some studies with children with dyslexia and learning disabilities were shown here to illustrate the use of AEP in this population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, the main Executive Control theories are exposed. Methods typical of Cognitive and Computational Neuroscience are introduced and the role of behavioural tasks involving conflict resolution in the response elaboration, after the presentation of a stimulus to the subject, are highlighted. In particular, the Eriksen Flanker Task and its variants are discussed. Behavioural data, from scientific literature, are illustrated in terms of response times and error rates. During experimental behavioural tasks, EEG is registered simultaneously. Thanks to this, event related potential, related with the current task, can be studied. Different theories regarding relevant event related potential in this field - such as N2, fERN (feedback Error Related Negativity) and ERN (Error Related Negativity) – are introduced. The aim of this thesis is to understand and simulate processes regarding Executive Control, including performance improvement, error detection mechanisms, post error adjustments and the role of selective attention, with the help of an original neural network model. The network described here has been built with the purpose to simulate behavioural results of a four choice Eriksen Flanker Task. Model results show that the neural network can simulate response times, error rates and event related potentials quite well. Finally, results are compared with behavioural data and discussed in light of the mentioned Executive Control theories. Future perspective for this new model are outlined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Negative biases in implicit self-evaluation are thought to be detrimental to subjective well-being and have been linked to various psychological disorders, including depression. An understanding of the neural processes underlying implicit self-evaluation in healthy subjects could provide a basis for the investigation of negative biases in depressed patients, the development of differential psychotherapeutic interventions, and the estimation of relapse risk in remitted patients. We thus studied the brain processes linked to implicit self-evaluation in 25 healthy subjects using event-related potential (ERP) recording during a self-relevant Implicit Association Test (sIAT). Consistent with a positive implicit self-evaluation in healthy subjects, they responded significantly faster to the congruent (self-positive mapping) than to the incongruent sIAT condition (self-negative mapping). Our main finding was a topographical ERP difference in a time window between 600 and 700 ms, whereas no significant differences between congruent and incongruent conditions were observed in earlier time windows. This suggests that biases in implicit self-evaluation are reflected only indirectly, in the additional recruitment of control processes needed to override the positive implicit self-evaluation of healthy subjects in the incongruent sIAT condition. Brain activations linked to these control processes can thus serve as an indirect measure for estimating biases in implicit self-evaluation. The sIAT paradigm, combined with ERP, could therefore permit the tracking of the neural processes underlying implicit self-evaluation in depressed patients during psychotherapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study shows that different neural activity during mental imagery and abstract mentation can be assigned to well-defined steps of the brain's information-processing. During randomized visual presentation of single, imagery-type and abstract-type words, 27 channel event-related potential (ERP) field maps were obtained from 25 subjects (sequence-divided into a first and second group for statistics). The brain field map series showed a sequence of typical map configurations that were quasi-stable for brief time periods (microstates). The microstates were concatenated by rapid map changes. As different map configurations must result from different spatial patterns of neural activity, each microstate represents different active neural networks. Accordingly, microstates are assumed to correspond to discrete steps of information-processing. Comparing microstate topographies (using centroids) between imagery- and abstract-type words, significantly different microstates were found in both subject groups at 286–354 ms where imagery-type words were more right-lateralized than abstract-type words, and at 550–606 ms and 606–666 ms where anterior-posterior differences occurred. We conclude that language-processing consists of several, well-defined steps and that the brain-states incorporating those steps are altered by the stimuli's capacities to generate mental imagery or abstract mentation in a state-dependent manner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Averaged event-related potential (ERP) data recorded from the human scalp reveal electroencephalographic (EEG) activity that is reliably time-locked and phase-locked to experimental events. We report here the application of a method based on information theory that decomposes one or more ERPs recorded at multiple scalp sensors into a sum of components with fixed scalp distributions and sparsely activated, maximally independent time courses. Independent component analysis (ICA) decomposes ERP data into a number of components equal to the number of sensors. The derived components have distinct but not necessarily orthogonal scalp projections. Unlike dipole-fitting methods, the algorithm does not model the locations of their generators in the head. Unlike methods that remove second-order correlations, such as principal component analysis (PCA), ICA also minimizes higher-order dependencies. Applied to detected—and undetected—target ERPs from an auditory vigilance experiment, the algorithm derived ten components that decomposed each of the major response peaks into one or more ICA components with relatively simple scalp distributions. Three of these components were active only when the subject detected the targets, three other components only when the target went undetected, and one in both cases. Three additional components accounted for the steady-state brain response to a 39-Hz background click train. Major features of the decomposition proved robust across sessions and changes in sensor number and placement. This method of ERP analysis can be used to compare responses from multiple stimuli, task conditions, and subject states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A ‘sense of self’ is essentially the ability to distinguish between self-generated and external stimuli. It consists of at least two very basic senses: a sense of agency and a sense of ownership. Disturbances seem to provide a basic deficit in many psychiatric diseases. The aim of our study was to manipulate those qualities separately in 28 patients with schizophrenia (14 auditory hallucinators and 14 non-hallucinators) and 28 healthy controls (HC) and to investigate the effects on the topographies and the power of the event-related potential (ERP). We performed a 76-channel EEG while the participants performed the task as in our previous paper. We computed ERPs and difference maps for the conditions and compared the amount of agency and ownership between the HC and the patients. Furthermore, we compared the global field power and the topographies of these effects. Our data showed effects of agency and ownership in the healthy controls and the hallucinator group and to a lesser degree in the non-hallucinator group. We found a reduction of the N100 during the presence of agency, and a bilateral temporal negativity related to the presence of ownership. For the agency effects, we found significant differences between HC and the patients. Contrary to the expectations, our findings were more pronounced in non-hallucinators, suggesting a more profoundly disturbed sense of agency compared to hallucinators. A contemporary increase of global field power in both patient groups indicates a compensatory recruitment of other mechanisms not normally associated with the processing of agency and ownership.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Some neurochemical evidence as well as recent studies on molecular genetics suggest that pathologic gambling may be related to dysregulated dopamine neurotransmission. Methods The current study examined sensory (motor) gating in pathologic gamblers as a putative measure of endogenous brain dopamine activity with prepulse inhibition of the acoustic startle eye-blink response and the auditory P300 event-related potential. Seventeen pathologic gamblers and 21 age- and gender-matched healthy control subjects were assessed. Both prepulse inhibition measures were recorded under passive listening and two-tone prepulse discrimination conditions. Results Compared to the control group, pathologic gamblers exhibited disrupted sensory (motor) gating on all measures of prepulse inhibition. Sensory motor gating deficits of eye-blink responses were most profound at 120-millisecond prepulse lead intervals in the passive listening task and at 240-millisecond prepulse lead intervals in the two-tone prepulse discrimination task. Sensory gating of P300 was also impaired in pathologic gamblers, particularly at 500-millisecond lead intervals, when performing the discrimination task on the prepulse. Conclusions In the context of preclinical studies on the disruptive effects of dopamine agonists on prepulse inhibition, our findings suggest increased endogenous brain dopamine activity in pathologic gambling in line with previous neurobiological findings.