994 resultados para P2W18M4(H2O)2O68(10-)
Resumo:
Three wardite mineral samples from different origins have been analysed by vibrational spectroscopy. The mineral is unusual in that it belongs to a unique symmetry class, namely the tetragonal-trapezohedral group. The structure of wardite contains layers of corner-linked –OH bridged MO6 octahedra stacked along the tetragonal C-axis in a four-layer sequence and linked by PO4 groups. Consequentially not all phosphate units are identical. Thus, two intense Raman bands observed at 995 and 1051 cm-1 are assigned to the ν1 PO43- symmetric stretching mode. Intense Raman bands are observed at 605 and 618 cm-1 with shoulders at 578 and 589 cm-1 are assigned to the ν4 out of plane bending modes of the PO43-. The observation of multiple bands supports the concept of non-equivalent phosphate units in the structure. Sharp infrared bands are observed at 3544 and 3611 cm-1 are attributed to the OH stretching vibrations of the hydroxyl units. Vibrational spectroscopy enables subtle details of the molecular structure of wardite to be determined.
Resumo:
The racemic title compound, C9H11NO4 . H2O, a tricyclic rearranged aminonorbornane dicarboxylic acid is a conformationally rigid analogue of glutamic acid and exists as an ammonium-carboxylate zwitterion, with the bridghead carboxylic acid group anti-related. In the crystal, intermolecular N-H...O and O-H...O hydrogen-bonding interactions involving the ammonium, carboxylic acid and water donor groups with both water and carboxyl O-atom acceptors give a three-dimensional framework structure.
Resumo:
The molecular structure of the mixed anion mineral Clinotyrolite Ca2Cu9[(As,S)O4]4(OH)10•10(H2O) has been determined by the combination of Raman and infrared spectroscopy. Characteristic bands associated with arsenate, sulphate and hydroxyl units are identified. Broad bands in the OH stretching region are observed and are resolved into component bands. Estimates of hydrogen bond distances were made using a Libowitzky function and both short and long hydrogen bonds are identified. Two intense Raman bands at 842 and ~796 cm-1 are assigned to the ν1 (AsO4)3- symmetric stretching and ν3 (AsO4)3- antisymmetric stretching modes. The comparatively sharp Raman band at 980 cm-1 is assigned to the ν1 (SO4)2- symmetric stretching mode and a broad Raman spectral profile centred upon 1100 cm-1 is attributed to the ν3 (SO4)2- antisymmetric stretching mode.
Resumo:
Detailed investigation of an intermediate member of the reddingite–phosphoferrite series, using infrared and Raman spectroscopy, scanning electron microcopy and electron microprobe analysis, has been carried out on a homogeneous sample from a lithium-bearing pegmatite named Cigana mine, near Conselheiro Pena, Minas Gerais, Brazil. The determined formula is (Mn1.60Fe1.21Ca0.01Mg0.01)∑2.83(PO4)2.12⋅(H2O2.85F0.01)∑2.86 indicating predominance in the reddingite member. Raman spectroscopy coupled with infrared spectroscopy supports the concept of phosphate, hydrogen phosphate and dihydrogen phosphate units in the structure of reddingite-phosphoferrite. Infrared and Raman bands attributed to water and hydroxyl stretching modes are identified. Vibrational spectroscopy adds useful information to the molecular structure of reddingite–phosphoferrite.
Resumo:
Some minerals are colloidal and show no X-ray diffraction patterns. Vibrational spectroscopy offers one of the few methods for the determination of the structure of these minerals. Among this group of minerals is pitticite, simply described as (Fe, AsO4, SO4, H2O). In this work, the analogue of the mineral pitticite has been synthesised. The objective of this research is to determine the molecular structure of the mineral pitticite using vibrational spectroscopy. Raman and infrared bands are attributed to the AsO43−, SO42− and water stretching and bending vibrations. The Raman spectrum of the pitticite analogue shows intense peaks at 845 and 837 cm−1 assigned to the AsO43− stretching vibrations. Raman bands at 1096 and 1182 cm−1 are attributed to the SO42− antisymmetric stretching bands. Raman spectroscopy offers a useful method for the analysis of such colloidal minerals.
Resumo:
Plumbogummite PbAl3(PO4)2(OH,H2O)6 is a mineral of environmental significance and is a member of the alunite-jarosite supergroup. The molecular structure of the mineral has been investigated by Raman spectroscopy. The spectra of different plumbogummite specimens differ although there are many common features. The Raman spectra prove the spectral profile consisting of overlapping bands and shoulders. Raman bands and shoulders observed at 971, 980, 1002 and 1023 cm−1 (China sample) and 913, 981, 996 and 1026 cm−1 (Czech sample) are assigned to the ν1 symmetric stretching modes of the (PO4)3−, at 1002 and 1023 cm−1 (China) and 996 and 1026 cm−1 to the ν1 symmetric stretching vibrations of the (O3POH)2− units, and those at 1057, 1106 and 1182 (China) and at 1102, 1104 and 1179 cm−1 (Czech) to the ν3 (PO4)3− and ν3 (PO3) antisymmetric stretching vibrations. Raman bands and shoulders at 634, 613 and 579 cm−1 (China) and 611 and 596 cm−1 (Czech) are attributed to the ν4 (δ) (PO4)3− bending vibrations and those at 507, 494 and 464 cm−1 (China) and 505 and 464 cm−1 (Czech) to the ν2 (δ) (PO4)3− bending vibrations. The Raman spectrum of the OH stretching region is complex. Raman bands and shoulders are identified at 2824, 3121, 3249, 3372, 3479 and 3602 cm−1 for plumbogummite from China, and at 3077, 3227, 3362, 3480, 3518 and 3601 cm−1 for the Czech Republic sample. These bands are assigned to the ν OH stretching modes of water molecules and hydrogen ions. Approximate O–H⋯O hydrogen bond lengths inferred from the Raman spectra vary in the range >3.2–2.62 Å (China) and >3.2–2.67 Å (Czech). The minority presence of some carbonate ions in the plumbogummite (China sample) is connected with distinctive intensity increasing of the Raman band at 1106 cm−1, in which may participate the ν1 (CO3)2− symmetric stretching vibration overlapped with phosphate stretching vibrations.
Resumo:
The presence of arsenic in the environment is a hazard. The accumulation of arsenate by a range of cations in the formation of minerals provides a mechanism for the remediation of arsenate contamination. The formation of the crandallite group of minerals provides a mechanism for arsenate accumulation. Among the crandallite minerals are philipsbornite, arsenocrandallite and arsenogoyazite. Raman spectroscopy complimented with infrared spectroscopy has enabled aspects of the structure of philipsbornite to be studied. The Raman spectrum of philipsbornite displays an intense band at around 840 cm−1 attributed to the overlap of the symmetric and antisymmetric stretching modes. Raman bands observed at 325, 336, 347, 357, 376 and 399 cm−1 are assigned to the ν2 (AsO4)3− symmetric bending vibration (E) and to the ν4 bending vibration (F2). The observation of multiple bending modes supports the concept of a reduction in symmetry of the arsenate anion in philipsbornite. Evidence for phosphate in the mineral is provided. By using an empirical formula, hydrogen bond distances for the OH units in philipsbornite of 2.8648 Å, 2.7864 Å, 2.6896 Å cm−1 and 2.6220 were calculated.
Resumo:
Zanazziite is the magnesium member of a complex beryllium calcium phosphate mineral group named roscherite. The studied samples were collected from the Ponte do Piauí mine, located in Itinga, Minas Gerais. The mineral was studied by electron microprobe, Raman and infrared spectroscopy. The chemical formula can be expressed as Ca2.00(Mg3.15,Fe0.78,Mn0.16,Zn0.01,Al0.26,Ca0.14)Be4.00(PO4)6.09(OH)4.00⋅5.69(H2O) and shows an intermediate member of the zanazziite–greinfeinstenite series, with predominance of zanazziite member. The molecular structure of the mineral zanazziite has been determined using a combination of Raman and infrared spectroscopy. A very intense Raman band at 970 cm−1 is assigned to the phosphate symmetric stretching mode whilst the Raman bands at 1007, 1047, 1064 and 1096 cm−1 are attributed to the phosphate antisymmetric stretching mode. The infrared spectrum is broad and the antisymmetric stretching bands are prominent. Raman bands at 559, 568, 589 cm−1 are assigned to the ν4 out of plane bending modes of the PO4 and HPO4 units. The observation of multiple bands supports the concept that the symmetry of the phosphate unit in the zanazziite structure is reduced in symmetry. Raman bands at 3437 and 3447 cm−1 are attributed to the OH stretching vibrations; Raman bands at 3098 and 3256 are attributed to water stretching vibrations. The width and complexity of the infrared spectral profile in contrast to the well resolved Raman spectra, proves that the pegmatitic phosphates are better studied with Raman spectroscopy.
Resumo:
The secondary phosphate mineral sigloite Fe3+Al2(PO4)2(OH)3·7H2O is the exception to the rule that phosphate mineral paragenesis is related to the final phase of hydrothermal mineralization at low temperatures. Sigloite was formed as an oxidation pseudomorph after paravauxite, during the last supergene paragenetic stage. We have studied the secondary phosphate mineral sigloite Fe3+Al2(PO4)2(OH)3·7H2O using vibrational spectroscopic techniques. Because the mineral is a phosphate mineral, it is readily studied by spectroscopic techniques as the phosphate and hydrogen phosphate units are readily measured. Indeed, sigloite shows the presence of both phosphate and hydrogen phosphate units in its structure. Raman bands at 1009 cm−1 with shoulders at 993 and 1039 cm−1 are assigned to stretching vibrations of and units. The Raman band at 993 cm−1 is assigned to the ν1 symmetric stretching mode of the POH units, whereas the Raman band at 1009 cm−1 is assigned to the ν1 symmetric stretching mode. Raman bands observed at 506, 528, 571, 596, 619 and 659 cm−1 are attributed to the ν4 out of plane bending modes of the PO4 and H2PO4 units. The Raman bands at 2988, 3118 and 3357 cm−1 are assigned to water stretching vibration. The series of bands at 3422, 3449, 3493, 3552 and 3615 cm−1 are assigned to the OH stretching vibrations of the hydroxyl units. The observation of multiple bands gives credence to the non-equivalence of the OH units in the sigloite structure.
Resumo:
Detailed spectroscopic and chemical investigation of matioliite, including infrared and Raman spectroscopy, scanning electron microscopy and electron probe microanalysis has been carried out on homogeneous samples from the Gentil pegmatite, Mendes Pimentel, Minas Gerais, Brazil. The chemical composition is (wt.%): FeO 2.20, CaO 0.05, Na2O 1.28, MnO 0.06, Al2O3 39.82, P2O5 42.7, MgO 4.68, F 0.02 and H2O 9.19; total 100.00. The mineral crystallize in the monoclinic crystal system, C2/c space group, with a = 25.075(1) Å, b = 5.0470(3) Å, c = 13.4370(7) Å, β = 110.97(3)°, V = 1587.9(4) Å3, Z = 4. Raman spectroscopy coupled with infrared spectroscopy supports the concept of phosphate, hydrogen phosphate and dihydrogen phosphate units in the structure of matioliite. Infrared and Raman bands attributed to water and hydroxyl stretching modes are identified. Vibrational spectroscopy adds useful information to the molecular structure of matioliite.
Resumo:
We have characterized anapaite Ca2Fe2+(PO4)2·4(H2O), a rare Ca and Fe phosphate, using a combination of electron microscopy and vibrational spectroscopy. The mineral occurs in soils and lacustrine sediments and is usually related to the diagenetic process in phosphorous rich sediments. The phosphate anion is characterized by its Raman spectrum with an intense sharp band at 943 cm-1, attributed to the ν1 PO4 3- symmetric stretching mode. Three bands at 992, 1039 and 1071 cm-1 are attributed to ν3 PO4 3-antisymmetric stretching modes. The infrared spectrum of anapaite shows complexity with a series of overlapping bands. Water in the structure of anapaite is observed by OH stretching vibrations at 2777, 3022 and 3176 cm-1 (Raman) and 2744, 3014 and 3096 cm-1 (infrared). The position of these bands provides evidence for the strong hydrogen bonding of water in the anapaite structure and contributes to the stability of the mineral.
Resumo:
This research was done on hureaulite samples from the Cigana claim, a lithium bearing pegmatite with triphylite and spodumene. The mine is located in Conselheiro Pena, east of Minas Gerais. Chemical analysis was carried out by Electron Microprobe analysis and indicated a manganese rich phase with partial substitution of iron. The calculated chemical formula of the studied sample is: (Mn3.23, Fe1.04, Ca0.19, Mg0.13)(PO4)2.7(HPO4)2.6(OH)4.78. The Raman spectrum of hureaulite is dominated by an intense sharp band at 959 cm−1 assigned to PO stretching vibrations of HPO42− units. The Raman band at 989 cm−1 is assigned to the PO43− stretching vibration. Raman bands at 1007, 1024, 1047, and 1083 cm−1 are attributed to both the HOP and PO antisymmetric stretching vibrations of HPO42− and PO43− units. A set of Raman bands at 531, 543, 564 and 582 cm−1 are assigned to the ν4 bending modes of the HPO42− and PO43− units. Raman bands observed at 414, and 455 cm−1 are attributed to the ν2 HPO42− and PO43− units. The intense A series of Raman and infrared bands in the OH stretching region are assigned to water stretching vibrations. Based upon the position of these bands hydrogen bond distances are calculated. Hydrogen bond distances are short indicating very strong hydrogen bonding in the hureaulite structure. A combination of Raman and infrared spectroscopy enabled aspects of the molecular structure of the mineral hureaulite to be understood.
Resumo:
Vibrational spectroscopy enables subtle details of the molecular structure of cyrilovite to be determined. Single crystals of a pure phase from a Brazilian pegmatite were used. Cyrilovite is the Fe3+ member of the wardite group. The infrared and Raman spectroscopy were applied to compare the structure of cyrilovite with that of wardite. The Raman spectrum of cyrilovite in the 800–1400 cm−1 spectral range shows two intense bands at 992 and 1055 cm−1 assigned to the ν1View the MathML source symmetric stretching vibrations. A series of low intensity bands at 1105, 1136, 1177 and 1184 cm−1 are assigned to the ν3View the MathML source antisymmetric stretching modes. The infrared spectrum of cyrilovite in the 500–1300 cm−1 shows much greater complexity than the Raman spectrum. Strong infrared bands are found at 970 and 1007 cm−1 and are attributed to the ν1View the MathML source symmetric stretching mode. Raman bands are observed at 612 and 631 cm−1 and are assigned to the ν4 out of plane bending modes of the View the MathML source unit. In the 2600–3800 cm−1 spectral range, intense Raman bands for cyrilovite are found at 3328 and 3452 cm−1 with a broad shoulder at 3194 cm−1 and are assigned to OH stretching vibrations. Sharp infrared bands are observed at 3485 and 3538 cm−1. Raman spectroscopy complimented with infrared spectroscopy has enabled the structure of cyrilovite to be ascertained and compared with that of wardite.
Resumo:
The phosphate mineral leucophosphite K(Fe2)3þ(PO4)2(OH) · 2H2O has been characterized by SEM-EDS, Raman, and infrared spectro- scopic measurements. The mineral is predominantly a K and Fe phosphate with some minor substitution of Al in the Fe3þ site. Raman bands at 994 and 1058 cm-1 are assigned to the symmetric stretching modes of PO3- and HPO2- units. The Raman bands at 1104, 1135, and 1177 cm-1 are assigned to the PO3- and HPO2- antisymmetric stretching modes. Raman and infrared spectra in the 2600–3800 cm-1 region show a complex set of overlapping bands, which may be resolved into the component bands. The Raman bands observed at 3325, 3355, and 3456 cm-1 are attributed to water stretching vibrations, and in the infrared spectrum, bands at 3237, 3317, and 3453 cm-1 are assigned to water stretching bands.
Resumo:
Abstract An assessment of the molecular structure of carletonite a rare phyllosilicate mineral with general chemical formula given as KNa4Ca4Si8O18(CO3)4(OH,F)·H2O has been undertaken using vibrational spectroscopy. Carletonite has a complex layered structure. Within one period of c, it contains a silicate layer of composition NaKSi8O18·H2O, a carbonate layer of composition NaCO3·0.5H2O and two carbonate layers of composition NaCa2CO3(F,OH)0.5. Raman bands are observed at 1066, 1075 and 1086 cm−1. Whether these bands are due to the CO32- ν1 symmetric stretching mode or to an SiO stretching vibration is open to question. Multiple bands are observed in the 300–800 cm−1 spectral region, making the attribution of these bands difficult. Multiple water stretching and bending modes are observed showing that there is much variation in hydrogen bonding between water and the silicate and carbonate surfaces.