957 resultados para Oxygen -evolving activity


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thylakoid membranes were isolated and purified from diploid filamentous sporophytes of Porphyra yezoensis Ueda using sucrose density gradient ultracentrifugation (SDGUC). After thylakoid membranes were solubilized with SDS, the photosystem II (PSII) particles with high 2, 6-dichloroindophenol (DCIP) photoreduction activity were isolated by SDGUC. The absorption and fluorescence spectra, DCIP photoreduction activity and oxygen evolution activity of the thylakoid membranes and PSII particles were determined. The polypeptide composition of purified PSII particles was distinguished by SDS-PAGE. Results showed that PSII particles of sporophytes differed from the gametophytes in spectral properties and polypeptide composition. Apart from 55 kDa D1-D2 heterodimer, CP47, CP43, 33 kDa protein was also detected. However, cyt c-550, 20 kDa, 14 kDa and 16 kDa proteins found in PSII particles from gametophytes were not detected in the sporophytes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Higher plants have evolved a well-conserved set of photoprotective mechanisms, collectively designated Non-Photochemical Quenching of chlorophyll fluorescence (qN), to deal with the inhibitory absorption of excess light energy by the photosystems. Their main contribution originates from safe thermal deactivation of excited states promoted by a highly-energized thylakoid membrane, detected via lumen acidification. The precise origins of this energy- or LlpH-dependent quenching (qE), arising from either decreased energy transfer efficiency in PSII antennae (~ Young & Frank, 1996; Gilmore & Yamamoto, 1992; Ruban et aI., 1992), from alternative electron transfer pathways in PSII reaction centres (~ Schreiber & Neubauer, 1990; Thompson &Brudvig, 1988; Klimov et aI., 1977), or from both (Wagner et aI., 1996; Walters & Horton, 1993), are a source of considerable controversy. In this study, the origins of qE were investigated in spinach thylakoids using a combination of fluorescence spectroscopic techniques: Pulse Amplitude Modulated (PAM) fluorimetry, pump-probe fluorimetry for the measurement of PSII absorption crosssections, and picosecond fluorescence decay curves fit to a kinetic model for PSII. Quenching by qE (,..,600/0 of maximal fluorescence, Fm) was light-induced in circulating samples and the resulting pH gradient maintained during a dark delay by the lumenacidifying capabilities of thylakoid membrane H+ ATPases. Results for qE were compared to those for the addition of a known antenna quencher, 5-hydroxy-1,4naphthoquinone (5-0H-NQ), titrated to achieve the same degree of Fm quenching as for qE. Quenching of the minimal fluorescence yield, F0' was clear (8 to 130/0) during formation of qE, indicative of classical antenna quenching (Butler, 1984), although the degree was significantly less than that achieved by addition of 5-0H-NQ. Although qE induction resulted in an overall increase in absorption cross-section, unlike the decrease expected for antenna quenchers like the quinone, a larger increase in crosssection was observed when qE induction was attempted in thylakoids with collapsed pH gradients (uncoupled by nigericin), in the absence of xanthophyll cycle operation (inhibited by DTT), or in the absence of quenching (LlpH not maintained in the dark due to omission of ATP). Fluorescence decay curves exhibited a similar disparity between qE-quenched and 5-0H-NQ-quenched thylakoids, although both sets showed accelerated kinetics in the fastest decay components at both F0 and Fm. In addition, the kinetics of dark-adapted thylakoids were nearly identical to those in qEquenched samples at F0' both accelerated in comparison with thylakoids in which the redox poise of the Oxygen-Evolving Complex was randomized by exposure to low levels of background light (which allowed appropriate comparison with F0 yields from quenched samples). When modelled with the Reversible Radical Pair model for PSII (Schatz et aI., 1988), quinone quenching could be sufficiently described by increasing only the rate constant for decay in the antenna (as in Vasil'ev et aI., 1998), whereas modelling of data from qE-quenched thylakoids required changes in both the antenna rate constant and in rate constants for the reaction centre. The clear differences between qE and 5-0H-NQ quenching demonstrated that qE could not have its origins in the antenna alone, but is rather accompanied by reaction centre quenching. Defined mechanisms of reaction centre quenching are discussed, also in relation to the observed post-quenching depression in Fm associated with photoinhibition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

ABSTRACT Photosystem II (PSII) of oxygenic photosynthesis has the unique ability to photochemically oxidize water, extracting electrons from water to result in the evolution of oxygen gas while depositing these electrons to the rest of the photosynthetic machinery which in turn reduces CO2 to carbohydrate molecules acting as fuel for the cell. Unfortunately, native PSII is unstable and not suitable to be used in industrial applications. Consequently, there is a need to reverse-engineer the water oxidation photochemical reactions of PSII using solution-stable proteins. But what does it take to reverse-engineer PSII’s reactions? PSII has the pigment with the highest oxidation potential in nature known as P680. The high oxidation of P680 is in fact the driving force for water oxidation. P680 is made up of a chlorophyll a dimer embedded inside the relatively hydrophobic transmembrane environment of PSII. In this thesis, the electrostatic factors contributing to the high oxidation potential of P680 are described. PSII oxidizes water in a specialized metal cluster known as the Oxygen Evolving Complex (OEC). The pathways that water can take to enter the relatively hydrophobic region of PSII are described as well. A previous attempt to reverse engineer PSII’s reactions using the protein scaffold of E. coli’s Bacterioferritin (BFR) existed. The oxidation potential of the pigment used for the BFR ‘reaction centre’ was measured and the protein effects calculated in a similar fashion to how P680 potentials were calculated in PSII. The BFR-RC’s pigment oxidation potential was found to be 0.57 V, too low to oxidize water or tyrosine like PSII. We suggest that the observed tyrosine oxidation in BRF-RC could be driven by the ZnCe6 di-cation. In order to increase the efficiency of iii tyrosine oxidation, and ultimately oxidize water, the first potential of ZnCe6 would have to attain a value in excess of 0.8 V. The results were used to develop a second generation of BFR-RC using a high oxidation pigment. The hypervalent phosphorous porphyrin forms a radical pair that can be observed using Transient Electron Paramagnetic Resonance (TR-EPR). Finally, the results from this thesis are discussed in light of the development of solar fuel producing systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Experimental Extended X-ray Absorption Fine Structure (EXAFS) spectra carry information about the chemical structure of metal protein complexes. However, pre- dicting the structure of such complexes from EXAFS spectra is not a simple task. Currently methods such as Monte Carlo optimization or simulated annealing are used in structure refinement of EXAFS. These methods have proven somewhat successful in structure refinement but have not been successful in finding the global minima. Multiple population based algorithms, including a genetic algorithm, a restarting ge- netic algorithm, differential evolution, and particle swarm optimization, are studied for their effectiveness in structure refinement of EXAFS. The oxygen-evolving com- plex in S1 is used as a benchmark for comparing the algorithms. These algorithms were successful in finding new atomic structures that produced improved calculated EXAFS spectra over atomic structures previously found.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

E¡ect of an extraction method on the structure of glucan and its immunostimulatory response in Fenneropenaeus indicus was investigated. Here we extracted alkali insoluble glucan (AIG) and alkali soluble glucan (ASG) from a ¢lamentous fungi Acremonium diospyri following alkali^acid hydrolysis and the sodium hypochlorite oxidation and dimethyl sulphoxide extraction method respectively. Structural analysis showed that 85% of glucan in AIG was a (1 !3)-b-D-glucan and it increased the prophenoloxidase and reactive oxygen intermediate activity when administered to F. indicus. On the other hand, ASG, which contained 93% (1 !3)-a-glucan, did not induce signi¢cant immune response in shrimp. Here we report that the di¡erence in immunostimulatory potential between AIG and ASG is due to the di¡erence in the percentage of (1 !3)-b-D-glucans present in each preparation, which varies with the method of extraction employed. Also our observations suggest that glucan can be used as a potential immunostimulant to shrimp, provided it contains (1 !3)-b-D-glucan as the major fraction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Oxidation of research-grade covellite was investigated in respirometric and growth experiments with Thiobacillus ferrooxidans. Covellite was directly oxidized by T. ferrooxidans in respirometric experiments, but the pH of mineral salts medium increased to prohibitively high values because of high sulfide concentrations. In glycine-H 2SO 4 buffered medium the pH remained steady and the oxygen uptake activity of T. ferrooxidans was not inhibited. In cultures growing with covellite as the sole source of energy, the pH increased to about 4. Redox potential increased to 500-600 mV during bacterial oxidation of covellite in the presence and absence of additional Fe 2+, whereas it remained mostly at about 350 mV in abiotic control. Jarosite was a major solid-phase product in T. ferrooxidans cultures. The solubilization of copper from covellite in inoculated flasks was higher than that obtained in control flasks and was not enhanced in the presence of additional Fe 2+.The sample also contained bornite (Cu 5FeS 4) which released iron in solution under all experimental conditions. Accumulation of S 0 was apparent only in inoculated covellite samples. © 1997 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The oxidative dissolution of research-grade chalcopyrite was characterized in respirometric and growth experiments with Thiobacillus ferrooxidans. In respirometric experiments with chalcopyrite, the pH of mineral salts medium increased to values that inhibited the oxygen uptake activity of T. ferrooxidans. In glycine-H 2SO 4 buffered medium the pH remained stable and oxygen uptake was not inhibited. In cultures growing with chalcopyrite as the sole source of energy, pH changes were only minor during the incubation. The redox potential values increased to about 600 mV during the bacterial oxidation of chalcopyrite in the presence and absence of additional Fe 2+, while they remained at about 350 mV in abiotic control flasks. Iron in chalcopyrite was solubilized and oxidized to Fe 3+ by T. ferrooxidans. In the abiotic controls, by comparison, less iron was solubilized and it remained as Fe 2+. Jarosite was a major solid- phase product in T. ferrooxidans cultures. The solub'flization of copper from chalcopyrite in inoculated flasks was enhanced in the presence of additional Fe 2+.Accumulation of S 0, reflecting partial oxidation of the S-entity of chalcopyrite, was apparent from the x-ray diffraction analysis of solid residues from the inoculated flasks as well the abiotic controls. © 1997 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The main aims of my PhD research work have been the investigation of the redox, photophysical and electronic properties of carbon nanotubes (CNT) and their possible uses as functional substrates for the (electro)catalytic production of oxygen and as molecular connectors for Quantum-dot Molecular Automata. While for CNT many and diverse applications in electronics, in sensors and biosensors field, as a structural reinforcing in composite materials have long been proposed, the study of their properties as individual species has been for long a challenging task. CNT are in fact virtually insoluble in any solvent and, for years, most of the studies has been carried out on bulk samples (bundles). In Chapter 2 an appropriate description of carbon nanotubes is reported, about their production methods and the functionalization strategies for their solubilization. In Chapter 3 an extensive voltammetric and vis-NIR spectroelectrochemical investigation of true solutions of unfunctionalized individual single wall CNT (SWNT) is reported that permitted to determine for the first time the standard electrochemical potentials of reduction and oxidation as a function of the tube diameter of a large number of semiconducting SWNTs. We also established the Fermi energy and the exciton binding energy for individual tubes in solution and, from the linear correlation found between the potentials and the optical transition energies, one to calculate the redox potentials of SWNTs that are insufficiently abundant or absent in the samples. In Chapter 4 we report on very efficient and stable nano-structured, oxygen-evolving anodes (OEA) that were obtained by the assembly of an oxygen evolving polyoxometalate cluster, (a totally inorganic ruthenium catalyst) with a conducting bed of multiwalled carbon nanotubes (MWCNT). Here, MWCNT were effectively used as carrier of the polyoxometallate for the electrocatalytic production of oxygen and turned out to greatly increase both the efficiency and stability of the device avoiding the release of the catalysts. Our bioinspired electrode addresses the major challenge of artificial photosynthesis, i.e. efficient water oxidation, taking us closer to when we might power the planet with carbon-free fuels. In Chapter 5 a study on surface-active chiral bis-ferrocenes conveniently designed in order to act as prototypical units for molecular computing devices is reported. Preliminary electrochemical studies in liquid environment demonstrated the capability of such molecules to enter three indistinguishable oxidation states. Side chains introduction allowed to organize them in the form of self-assembled monolayers (SAM) onto a surface and to study the molecular and redox properties on solid substrates. Electrochemical studies on SAMs of these molecules confirmed their attitude to undergo fast (Nernstian) electron transfer processes generating, in the positive potential region, either the full oxidized Fc+-Fc+ or the partly oxidized Fc+-Fc species. Finally, in Chapter 6 we report on a preliminary electrochemical study of graphene solutions prepared according to an original procedure recently described in the literature. Graphene is the newly-born of carbon nanomaterials and is certainly bound to be among the most promising materials for the next nanoelectronic generation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Im Rahmen dieser Arbeit wurden zweikernige Modellkomplexe zur Untersuchung der Radikal-Metallwechselwirkung innerhalb des wasseroxidierenden Zentrums des Photo¬systems II synthetisiert und eine magneto-strukturelle Korrelation dieser Komplexe erstellt. Als Liganden wurden diverse sechs- bis siebenzähnige Chelatliganden verwendet, welche über zwei Koordinationstaschen und eine verbrückende Phenolatgruppe verfügen. Zwei daran gebundene Manganionen liegen in einer wohl definierten Umgebung nicht koordinativ gesättigt vor. An die freien Koordinationsstellen können weitere ein bis zwei Brückenliganden binden, bei denen es sich in dieser Arbeit hauptsächlich um Carboxylate handelt. Durch die Verwendung eines diamagnetischen Brückenliganden konnte die magnetische Spin-Spin-Austauschwechselwirkung zwischen den spintragenden Manganionen über die verbrücken¬de Phenolatgruppe bestimmt werden. Komplexe, welche über Manganionen in den gleichen Oxidationsstufen, aber über unterschiedliche Carboxylatbrückenliganden verfügen, weisen ähnliche magnetische Austauschwechselwirkungen zwischen den Metallzentren auf. Diese Beobachtung konnte durch eine strukturelle Ähnlichkeit dieser Komplexe erklärt werden. Mittels Aufsummieren der Bindungslängen der verbrückenden Phenolateinheit zu beiden Zentralionen kann innerhalb dieser Komplexe jeweils die Länge des Wechselwirkungspfades erhalten werden, welcher die magnetische Austauschwechselwirkung maßgeblich beein¬flusst. Je länger der Wechselwirkungspfad ist, desto kleiner ist die Austausch¬wechsel¬wirkung. Durch Austausch der diamagnetischen Carboxylate durch paramagnetische benzoat¬substituierte Nitronyl Nitroxid Radikale wurden den Komplexen ein bis zwei weitere Spinzentren hinzugefügt, welche mit den Spins der Zentralionen wechselwirken können. Simulationen der magnetischen Suszeptibilitätsmessungen liefern Werte für die magneti¬schen Austausch¬wechselwirkungen zwischen den Nitronyl Nitroxid Radikalen und den Manganionen, die in allen Fällen schwach ferromagnetisch zwischen 0 und 4,7 cm-1 sind. In einer Auftragung dieser Austauschwechselwirkungen gegen die Mangan-Carboxylat-Bindungs¬längen von strukturell charakterisierten äquivalenten acetatverbrückten Komplexen, kann eine lineare Abhängigkeit gezeigt werden.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Como elemento primordial, nos cuidados de saúde, o enfermeiro é o profissional, que por mais tempo desenvolve atividades junto do doente, tornando-o assim responsável, por desempenhar um papel fundamental na prevenção das infeções associadas aos cuidados de saúde, mas também o torna potencialmente veículo de transmissão das mesmas. A higienização das mãos é identificada mundialmente como uma medida básica, mas fundamental, no controle de infeções associadas aos cuidados de saúde, logo é considerada como um dos pilares da prevenção e do controle de infeções nos serviços de saúde. O doente crítico é um doente de alto risco, vulnerável por estar sujeito a várias técnicas invasivas, por sua vez o mesmo, é suscetível às infeções cruzadas. Com o intuito de diminuir e/ou eliminar essas mesmas infeções, cabe aos enfermeiros, a realização de momentos de observação, monitorização dos momentos de adesão às boas práticas em resultado do observado, para além do melhoramento em momentos de formação, pois a prática da enfermagem, não sendo estanque, exige ao longo do seu percurso, um processo contínuo de aprendizagem e atualização para que os cuidados sejam de excelência. Cabe ao Enfermeiro Especialista em Enfermagem Médico-cirúrgica, a responsabilidade de conceber estratégias que visem a redução das infeções que poderão ocorrer na prestação de cuidados

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Although the "slow" phase of pulmonary oxygen uptake (Vo2) appears to represent energetic processes in contracting muscle, electromyographic evidence tends not to support this. The present study assessed normalized integrated electromyographic (NIEMG) activity in eight muscles that act about the hip, knee and ankle during 8 min of moderate (ventilatory threshold) cycling in six male cyclists. (Vo2) was measured breath by breath during four repeated trials at each of the two intensities. Moderate and very heavy exercise followed a 4-min period of light exercise (50 W). During moderate exercise the slow (Vo2) phase was absent and NIEMG in all muscles did not increase after the first minute of exercise. During very heavy exercise, the slow phase emerged (time delay=58 ± 16 s) and increased progressively (time constant=120 ± 35 s) to an amplitude (0.83 ± 0.16 L/min) that was approximately 21% of the total (Vo2) response. This slow (Vo2) phase coincided with a significant increase in NIEMG in most muscles, and differences in NIEMG activities between the two intensities revealed "slow" muscle activation profiles that differed between muscles in terms of the onset, amplitude and shape of these profiles. This supports the hypothesis that the slow (Vo2) phase is a function of these different slow muscle activation profiles.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background Physical inactivity is a modifiable risk factor for many chronic conditions and a leading cause of premature mortality. An increasing proportion of adults worldwide are not engaging in a level of physical activity sufficient to prevent or alleviate these adverse effects. Medical professionals have been identified as potentially powerful sources of influence for those who do not meet minimum physical activity guidelines. Health professionals are respected and expected sources of advice and they reach a large and relevant proportion of the population. Despite this potential, health professionals are not routinely practicing physical activity promotion. Discussion Medical professionals experience several known barriers to physical activity promotion including lack of time and lack of perceived efficacy in changing physical activity behaviour in patients. Furthermore, evidence for effective physical activity promotion by medical professionals is inconclusive. To address these problems, new approaches to physical activity promotion are being proposed. These include collaborating with community based physical activity behaviour change interventions, preparing patients for effective brief counselling during a consultation with the medical professional, and use of interactive behaviour change technology. Summary It is important that we recognise the latent risk of physical inactivity among patients presenting in clinical settings. Preparation for improving patient physical activity behaviours should commence before the consultation and may include physical activity screening. Medical professionals should also identify suitable community interventions to which they can refer physically inactive patients. Outsourcing the majority of a comprehensive physical activity intervention to community based interventions will reduce the required clinical consultation time for addressing the issue with each patient. Priorities for future research include investigating ways to promote successful referrals and subsequent engagement in comprehensive community support programs to increase physical activity levels of inactive patients. Additionally, future clinical trials of physical activity interventions should be evaluated in the context of a broader framework of outcomes to inform a systematic consideration of broad strengths and weaknesses regarding not only efficacy but cost-effectiveness and likelihood of successful translation of interventions to clinical contexts.