111 resultados para Oxihidróxido de nióbio


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The NbCl5 being a strong electrophile, is a potential candidate to act as a Lewis acid, and therefore it mediates various organic reactions. For this reason, it has received continuous attention by Brazilian researchers, especially in recent decades, since Brazil holds the largest reserves of niobium, besides being the largest producer of this element. The Michael addition reaction is one of the most widely used for forming carbon-carbon bonds and takes place by the addition of nucleophiles to activated olefins. Although this type of reaction is usually catalyzed by base, there are reports in the literature on the use of various Lewis acids in this type of reaction. The synthesis of enamines based acetilenodicarboxilates and amines, aromatic or alkyl, by Michael addition reaction is quite interesting, since these are valuable synthetic intermediates for the synthesis of heterocyclic and they are used in multicomponent reactions. The derivatives of anilino-fumarate also have a great potential for medical application. In this study we investigated the use of niobium pentachloride as Lewis acid to catalyze the Michael additions between the derivatives of aniline and acetilenodicarboxilates the synthesis of enamines

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coumarin is a natural active compound that can be found in many plants. The coumarins have many properties such as bronchodilator, anti-inflammatory, antioxidant, anticoagulant, antibiotics, immunomodulatory, antimicrobial and antiviral, thus, they are widely used in medical applications. More recently the coumarin derivatives have attracted the interest of many research groups in the field of new materials, for example the possibility of their use as sensitizers in dye-sensitized solar cells (DSSC) and lasers. The MCRs are defined as a process in which three or more reactants are combined in the same reaction pot, resulting in products with good structural complexity a single step, in addition to economy of atoms and selectivity and is a very important feature in modern synthetic methodology. In this work we investigated the use of niobium pentachloride as catalyst of the multicomponent reactions between phenolic derivatives, various aromatic aldehydes and β-diester derivatives in the synthesis of 4-aryl-3,4-dihydrocoumarin derivatives. The reactions were carried out at room temperature, under inert atmosphere (N2), using dichloromethane anhydrous (CH2 Cl2) as solvent, with a reaction time of most 120 hours. The products were isolated by column chromatography on silica gel and submitted to spectrometric and spectroscopic analysis. The results show that NbCl5 is an excellent agent for promoting the synthesis of 4-aryl-3,4-dihydrocoumarin derivatives through multicomponent reactions, obtaining yields varying from 45 to 95%

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In heterogeneous catalysis, numerous elements such as titanium and iron have been studied as nanoscale catalysts, but little is known about the use of niobium in nanocatalysis. The nanostructured particles have intrinsic and different physicochemical characteristics with great potential for use in industrial scale. Brazil having the largest known worldwide niobium reserve has the great challenge of creating pioneering technologies with the metal. Biodiesel is an alternative fuel and renewable substitute for regular diesel. Being biodegradable, non-toxic and have CO2 emissions lower than regular diesel, it contributes to the environment and to the independence from oil. The aim of this work was initially synthesize nanoscale particles of niobium pentoxide (Nanospheres, nanorods, nanofibers, nanocubes) from the sol-gel technique. The characterization of different nanoscale structures obtained was performed using different analytical techniques such as x-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). The synthesized nanometer niobium oxide will be used as a heterogeneous catalyst in biodiesel synthesis from commercial soybean oil, checking in detail what the effect of morphology is presented (Nanospheres, nanorods, nanofibers, nanocubes) in the yield of biodiesel synthesis, comparing these results with those already described in literature for the amorphous niobium oxide and other oxide catalysts. The biodiesel obtained was characterized by gas chromatography system equipped with a FID detector

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O nióbio possui potencial para ser um metal de grande aplicabilidade, tanto na engenharia como na área médica; porém a literatura médica a respeito deste material é escassa. Para que o nióbio de pureza 97,47% possa ser utilizado como material de implante e permita a osteointegração se faz necessário avaliá-lo quanto a sua biocompatibilidade e potencial de mineralização. Para tanto é importante compreender os eventos celulares e moleculares que ocorrem na interface nióbio-célula. Neste estudo foram utilizadas as técnicas laboratoriais de Alamar Blue, coloração de Alizarin Red, assim como a expressão de genes, importantes na ocorrência de mineralização e manutenção das células osteoblásticas, utilizando a técnica de qPCR. As células em contato direto com o nióbio obtiveram atividade celular indiferente em relação ao material controle. O nióbio possibilita a aposição de depósitos de cálcio e a adesão celular em sua superfície, comprovando a osteoindução, osteocondução e osteogênese. A análise do qPCR comprovou estatisticamente pelo método Livak que o nióbio é um material com potencial de osteointegração. O entendimento dos resultados obtidos nos testes de biocompatibilidade, mineralização e expressão gênica comprovaram que o metal nióbio é biocompatível e possui propriedades osteointegrativas, pode ser indicado como um material para implante e que permite a osteointegração.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lubricants and cutting middle distillates typically have large amounts of n-paraffins to increase its freezing point and fluidity. Accordingly, the removal of n-paraffins of long chain lubricants oils and diesel is essential to get a product with good cold flow properties. The development of new catalysts, which exhibit thermal stability and catalytic activity for the hydroisomerization reaction is still a challenge. Thus, silicoaluminophosphates (SAPO) were synthesized by different routes. Have been used also post-synthesis treatment for obtaining hybrid structures and others synthesis have been carried out with mesoporous template (soft and hard-template). Therefore, SAPO have been impregnated with H2PtCl6 solution by the incipient wetness method. Then assessments of catalytic activities in hydroisomerization and hydrocracking reactions of hexadecane have been held. Besides SAPO, niobium phosphate - NbP - were also impregnated with platinum and evaluated in the same reaction. After impregnation, these catalysts have been characterized by X-ray diffraction (XRD), nitrogen adsorption, infrared spectroscopy with adsorbed pyridine (IV-PY), scanning electron microscopy (SEM) and resonance nuclear magnetic 29Si (29Si-NMR). The characterization results by XRD have shown that it has been possible to obtain mesoporous SAPOs. However, for the syntheses with soft template there was collapse of the structure after removal of the organic template. Even so, these catalysts have been actives. It was possible to obtain hybrid materials through the synthesis of SAPO-11 made with hard templates and by means of post-synthesis treatments samples of SAPO-11. Moreover, NbP has shown characteristic XRD of amorphous materials, with high acidity and were active in the conversion of hexadecane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lubricants and cutting middle distillates typically have large amounts of n-paraffins to increase its freezing point and fluidity. Accordingly, the removal of n-paraffins of long chain lubricants oils and diesel is essential to get a product with good cold flow properties. The development of new catalysts, which exhibit thermal stability and catalytic activity for the hydroisomerization reaction is still a challenge. Thus, silicoaluminophosphates (SAPO) were synthesized by different routes. Have been used also post-synthesis treatment for obtaining hybrid structures and others synthesis have been carried out with mesoporous template (soft and hard-template). Therefore, SAPO have been impregnated with H2PtCl6 solution by the incipient wetness method. Then assessments of catalytic activities in hydroisomerization and hydrocracking reactions of hexadecane have been held. Besides SAPO, niobium phosphate - NbP - were also impregnated with platinum and evaluated in the same reaction. After impregnation, these catalysts have been characterized by X-ray diffraction (XRD), nitrogen adsorption, infrared spectroscopy with adsorbed pyridine (IV-PY), scanning electron microscopy (SEM) and resonance nuclear magnetic 29Si (29Si-NMR). The characterization results by XRD have shown that it has been possible to obtain mesoporous SAPOs. However, for the syntheses with soft template there was collapse of the structure after removal of the organic template. Even so, these catalysts have been actives. It was possible to obtain hybrid materials through the synthesis of SAPO-11 made with hard templates and by means of post-synthesis treatments samples of SAPO-11. Moreover, NbP has shown characteristic XRD of amorphous materials, with high acidity and were active in the conversion of hexadecane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It seeks to find an alternative to the current tantalum electrolytic capacitors in the market due to its high cost. Niobium is a potential replacement for be lighter and cheaper than tantalum. They belong to the same table group periodically and thus exhibit several physical and chemical properties similar. Niobium is used in many technologically important applications, and Brazil has the largest reserves, around 96%. These electrolytic capacitors have high specific capacitance, so they can store high energy in small volumes compared to other types of capacitors. This is the main attraction of this type of capacitor because is growing demand in the production of capacitors with capacitance specifies increasingly high, this because of the miniaturization of various devices such as GPS devices, televisions, computers, phones and many others. The production route of the capacitor was made by powder metallurgy. The initial niobium poder was first characterized by XRD, SEM and laser particle size to then be sieved into particle size 400mesh. The powder was then compacted at pressure of 150MPa and sintered at 1400, 1450 and 1500°C using two sintering time 30 and 60min. Sintering is an important part of the process as it affects properties as porosity and surface cleaning of the samples, which greatly affected the quality of the capacitor. After sintering the samples were underwent a process of anodic oxidation (anodizing), which created a thin film of niobium pentoxide over the whole surface of the sample, this film is the dielectric capacitor. The anodizing process variables influenced a lot in film formation and consequently the capacitor. The samples were characterized by electrical measurements of capacitance, loss factor and ESR (equivalent series resistance). The sintering has affected the porosity and in turn the specific area of the samples. The capacitor area is directly related to the capacitance, that is, the higher the specific area is the capacitance. Higher sintering temperatures decrease the surface area but eliminate as many impurities. The best results were obtained at a temperature of 1400°C with 60 minutes. The most interesting results were compared with the specific capacitance and ESR for all samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It seeks to find an alternative to the current tantalum electrolytic capacitors in the market due to its high cost. Niobium is a potential replacement for be lighter and cheaper than tantalum. They belong to the same table group periodically and thus exhibit several physical and chemical properties similar. Niobium is used in many technologically important applications, and Brazil has the largest reserves, around 96%. These electrolytic capacitors have high specific capacitance, so they can store high energy in small volumes compared to other types of capacitors. This is the main attraction of this type of capacitor because is growing demand in the production of capacitors with capacitance specifies increasingly high, this because of the miniaturization of various devices such as GPS devices, televisions, computers, phones and many others. The production route of the capacitor was made by powder metallurgy. The initial niobium poder was first characterized by XRD, SEM and laser particle size to then be sieved into particle size 400mesh. The powder was then compacted at pressure of 150MPa and sintered at 1400, 1450 and 1500°C using two sintering time 30 and 60min. Sintering is an important part of the process as it affects properties as porosity and surface cleaning of the samples, which greatly affected the quality of the capacitor. After sintering the samples were underwent a process of anodic oxidation (anodizing), which created a thin film of niobium pentoxide over the whole surface of the sample, this film is the dielectric capacitor. The anodizing process variables influenced a lot in film formation and consequently the capacitor. The samples were characterized by electrical measurements of capacitance, loss factor and ESR (equivalent series resistance). The sintering has affected the porosity and in turn the specific area of the samples. The capacitor area is directly related to the capacitance, that is, the higher the specific area is the capacitance. Higher sintering temperatures decrease the surface area but eliminate as many impurities. The best results were obtained at a temperature of 1400°C with 60 minutes. The most interesting results were compared with the specific capacitance and ESR for all samples.