983 resultados para Other Civil and Environmental Engineering


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This is an investigation into the microbially mediated processes involved in the transformation of arsenic. With the recent change in the Federal Maximum Contaminant Level for arsenic in drinking water, an increasing amount of resources are being devoted to understanding the mechanisms involved in the movement of arsenic. Arsenic in drinking water typically comes from natural sources, but the triggers that result in increased release of arsenic from parent material are poorly understood. Knowledge of these processes is necessary in order to make sound engineering decisions regarding drinking water management practices. Recent years have brought forth the idea that bacteria play a significant role in arsenic cycling. Groundwater is a major source of potable water in this and many other countries. To date, no reports have been made indicating the presence and activity of arsenate reducing bacteria in groundwater settings, which may increase dissolved arsenic concentrations. This research was designed to address this question and has shown that these bacteria are present in Maine groundwater. Two Maine wells were sampled in order to culture resident bacteria that are capable of dissimilatory arsenate reduction. Samples were collected using anaerobic techniques fiom wells in Northport and Green Lake. These samples were amended with specific compounds to enrich the resident population of arsenate utilizing bacteria. These cultures were monitored over time to establish rates of arsenate reduction. Cultures fiom both sites exhibited arsenate reduction in initial enrichment cultures. Isolates obtained fiom the Green Lake enrichments, however, did not reduce arsenate. This indicates either that a symbiotic relationship was required for the observed arsenate reduction or that fast-growing fermentative organisms that could survive in high arsenate media were picked in the isolation procedure. The Northport cultures exhibited continued arsenate reduction after isolation and successive transfers into fiesh media. The cultured bacteria reduced the majority of 1 a arsenate solutions in less than one week, accompanied by a corresponding oxidation of lactate. The 16s rRNA fiom the isolate was arnplifled and sequenced. The results of the DNA sequence analysis indicate that the rRNA sequence of the bacteria isolated at the Northport site is unique. This means that this strain of bacteria has not been reported before. It is in the same taxonomic subgroup as two previously described arsenate respirers. The implications of this study are significant. The fact that resident bacteria are capable of reducing arsenate has implications for water management practices. Reduction of arsenate to arsenite increases the mobility of the compound, as well as the toxicity. An understanding of the activity of these types of organisms is necessary in order to understand the contribution they are making to arsenic concentrations in drinking water. The next step in this work would be to quantitj the actual loading of dissolved arsenic present in aquifers because of these organisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

According to the U.S. National Environmental Policy Act of 1969 (NEPA), federal action to manipulate habitat for species conservation requires an environmental impact statement, which should integrate natural, physical, economic, and social sciences in planning and decision making. Nonetheless, most impact assessments focus disproportionately on physical or ecological impacts rather than integrating ecological and socioeconomic components. We developed a participatory social-ecological impact assessment (SEIA) that addresses the requirements of NEPA and integrates social and ecological concepts for impact assessments. We cooperated with the Bureau of Land Management in Idaho, USA on a project designed to restore habitat for the Greater Sage-Grouse (Centrocercus urophasianus). We employed questionnaires, workshop dialogue, and participatory mapping exercises with stakeholders to identify potential environmental changes and subsequent impacts expected to result from the removal of western juniper (Juniperus occidentalis). Via questionnaires and workshop dialogue, stakeholders identified 46 environmental changes and associated positive or negative impacts to people and communities in Owyhee County, Idaho. Results of the participatory mapping exercises showed that the spatial distribution of social, economic, and ecological values throughout Owyhee County are highly associated with the two main watersheds, wilderness areas, and the historic town of Silver City. Altogether, the SEIA process revealed that perceptions of project scale varied among participants, highlighting the need for specificity about spatial and temporal scales. Overall, the SEIA generated substantial information concerning potential impacts associated with habitat treatments for Greater Sage-Grouse. The SEIA is transferable to other land management and conservation contexts because it supports holistic understanding and framing of connections between humans and ecosystems. By applying this SEIA framework, land managers and affected people have an opportunity to fulfill NEPA requirements and develop more comprehensive management plans that better reflect the linkages of social-ecological systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents results of physical and mechanical tests in polyester (PET) and polypropilene (PP) nonwoven geotextiles that were exposed to weathering conditions (solar radiation, humidity, wind, rain) after some specific periods of exposure (1, 2, 3 and 4 months). ASTM D5970 and Brazilian standards (NBR) recommendation were followed in this research. Results show variations in tensile properties and in the mass per unit area. Variations in the deformations were more significant in the PP geotextile when compared to the PET geotextile.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many factors such as the sunlight, intensity of radiation, temperature, and moisture may influence the degradation process of geosynthetics. UV stabilizers are used especially in polyolefin geomembrane to prevent the degradation process. In these geomembranes the service lifetime is initially governed by the consumption of antioxidants. Tests like MFI and OIT are a alternative to detect the oxidative degradation in polyolefins. This article evaluates HDPE geomembrane degradation after UV exposure through the results of MFI and OIT tests. Two kinds of geomembranes were evaluated: a black and smooth (0.8, 1.0, 1.5, 2.5 mm) and a white and textured (1.0 mm). MFI test showed some levels of superficial degradation (crosslink) in HDPE geomembrane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transportation corridors in megaregions present a unique challenge for planners because of the high concentration of development, complex interjurisdictional issues, and history of independent development of core urban centers. The concept of resilience, as applied to megaregions, can be used to understand better the performance of these corridors. Resiliency is the ability to recover from or adjust easily to change. Resiliency performance measures can be expanded on for application to megaregions throughout the United States. When applied to transportation corridors in megaregions and represented by performance measures such as redundancy, continuity, connectivity, and travel time reliability, the concept of resiliency captures the spatial and temporal relationships between the attributes of a corridor, a network, and neighboring facilities over time at the regional and local levels. This paper focuses on the development of performance measurements for evaluating corridor resiliency as well as a plan for implementing analysis methods at the jurisdictional level. The transportation corridor between Boston, Massachusetts, and Washington, D.C., is used as a case study to represent the applicability of these measures to megaregions throughout the country.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Environmental Health (EH) program of Peace Corps (PC) Panama and a non-governmental organization (NGO) Waterlines have been assisting rural communities in Panama gain access to improved water sources through the practice of community management (CM) model and participatory development. Unfortunately, there is little information available on how a water system is functioning once the construction is complete and the volunteer leaves the community. This is a concern when the recent literature suggests that most communities are not able to indefinitely maintain a rural water system (RWS) without some form of external assistance (Sara and Katz, 1997; Newman et al, 2002; Lockwood, 2002, 2003, 2004; IRC, 2003; Schweitzer, 2009). Recognizing this concern, the EH program director encouraged the author to complete a postproject assessment of the past EH water projects. In order to carry out the investigation, an easy to use monitoring and evaluation tool was developed based on literature review and the author’s three years of field experience in rural Panama. The study methodology consists of benchmark scoring systems to rate the following ten indicators: watershed, source capture, transmission line, storage tank, distribution system, system reliability, willingness to pay, accounting/transparency, maintenance, and active water committee members. The assessment of 28 communities across the country revealed that the current state of physical infrastructure, as well as the financial, managerial and technical capabilities of water committees varied significantly depending on the community. While some communities are enjoying continued service and their water committee completing all of its responsibilities, others have seen their water systems fall apart and be abandoned. Overall, the higher score were more prevalent for all ten indicators. However, even the communities with the highest scores requested some form of additional assistance. The conclusion from the assessment suggests that the EH program should incorporate an institutional support mechanism (ISM) to its sector policy in order to systematically provide follow-up support to rural communities in Panama. A full-time circuit rider with flexible funding would be able to provide additional technical support, training and encouragement to those communities in need.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rehabilitation of concrete structures, especially concrete bridge decks, is a major challenge for transportation agencies in the United States. Often, the most appropriate strategy to preserve or rehabilitate these structures is to provide some form of a protective coating or barrier. These surface treatments have typically been some form of polymer, asphalt, or low-permeability concrete, but the application of UHPC has shown promise for this application mainly due to its negligible permeability, but also as a result of its excellent mechanical properties, self-consolidating nature, rapid gain strength, and minimal creep and shrinkage characteristics. However, for widespread acceptance, durability and performance of the composite system must be fully understood, specifically the bond between UHPC and NSC often used in bridge decks. It is essential that the bond offers enough strength to resist the stress due to mechanical loading or thermal effects, while also maintaining an extended service-life performance. This report attempts to assess the bond strength between UHPC and NSC under different loading configurations. Different variables, such as roughness degree of the concrete substrates, age of bond, exposure to freeze-thaw cycles and wetting conditions of the concrete substrate, were included in this study. The combination of splitting tensile test with 0, 300, 600 and 900 freeze-thaw cycles was carried out to assess the bond performance under severe ambient conditions. The slant-shear test was utilized with different interface angles to provide a wide understanding of the bond performance under different combinations of compression and shear stresses. The pull-off test is the most accepted method to evaluate the bond strength in the field. This test which studies the direct tensile strength of the bond, the most severe loading condition, was used to provide data that can be correlated with the other tests that only can be used in the laboratory. The experimental program showed that the bond performance between UHPC and NSC is successful, as the strength regardless the different degree of roughness of the concrete substrate, the age of the composite specimens, the exposure to freeze-thaw cycles and the different loading configurations, is greater than that of concrete substrate and largely satisfies with ACI 546.3R-06.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aggregates were historically a low cost commodity but with communities and governmental agencies reducing the amount of mining the cost is increasing dramatically. An awareness needs to be brought to communities that aggregate production is necessary for ensuring the existing infrastructure in today’s world. This can be accomplished using proven technologies in other areas and applying them to show how viable reclamation is feasible. A proposed mine reclamation, Douglas Township quarry (DTQ), in Dakota Township, MN was evaluated using Visual Hydrologic Evaluation of Landfill Performance (HELP) model. The HELP is commonly employed for estimating the water budget of a landfill, however, it was applied to determine the water budget of the DTQ following mining. Using an environmental impact statement as the case study, modeling predictions indicated the DTQ will adequately drain the water being put into the system. The height of the groundwater table will rise slightly due to the mining excavations but no ponding will occur. The application of HELP model determined the water budget of the DTQ and can be used as a viable option for mining companies to demonstrate how land can be reclaimed following mining operations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This Ultra High Performance Concrete research involves observing early-age creep and shrinkage under a compressive load throughout multiple thermal curing regimes. The goal was to mimic the conditions that would be expected of a precast/prestressing plant in the United States, where UHPC beams would be produced quickly to maximize a manufacturing plant’s output. The practice of steam curing green concrete to accelerate compressive strengths for early release of the prestressing tendons was utilized (140°F [60°C], 95% RH, 14 hrs), in addition to the full thermal treatment (195°F [90°C], 95% RH, 48 hrs) while the specimens were under compressive loading. Past experimental studies on creep and shrinkage characteristics of UHPC have only looked at applying a creep load after the thermal treatment had been administered to the specimens, or on ambient cured specimens. However, this research looked at mimicking current U.S. precast/prestressed plant procedures, and thus characterized the creep and shrinkage characteristics of UHPC as it is thermally treated under a compressive load. Michigan Tech has three moveable creep frames to accommodate two loading criteria per frame of 0.2f’ci and 0.6f’ci. Specimens were loaded in the creep frames and moved into a custom built curing chamber at different times, mimicking a precast plant producing several beams throughout the week and applying a thermal cure to all of the beams over the weekend. This thesis presents the effects of creep strain due to the varying curing regimes. An ambient cure regime was used as a baseline for the comparison against the varying thermal curing regimes. In all cases of thermally cured specimens, the compressive creep and shrinkage strains are accelerated to a maximum strain value, and remain consistent after the administration of the thermal cure. An average creep coefficient for specimens subjected to a thermal cure was found to be 1.12 and 0.78 for the high and low load levels, respectively. Precast/pressed plants can expect that simultaneously thermally curing UHPC elements that are produced throughout the week does not impact the post-cure creep coefficient.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report provides an analysis of the thermal performance and emissions characteristics of improved biomass stoves constructed using earthen materials. Commonly referred to as mud stoves, this type of improved stove incorporates high clay content soil with an organic binder in the construction of its combustion chamber and body. When large quantities of the mud material are used to construct the stove body, the stove does not offer significant improvements in fuel economy or air quality relative to traditional open fire cooking. This is partly because a significant amount of heat is absorbed by the mass of the stove reducing combustion efficiency and heat transfer to the cook pot. An analysis of the thermal and mechanical properties of stove materials was also performed. A material mixture containing a one‐to‐one ratio by volume of high content clay soil and straw was found to have thermal properties comparable to fired ceramics used in more advanced improved stove designs. Feedback from mud stove users in Mauritania and Mali, West Africa was also collected during implementation. Suggestions for stove design improvements were developed based on this information and the data collected in the performance, emissions, and material properties analysis. Design suggestions include reducing stove height to accommodate user cooking preferences and limiting overall stove mass to reduce heat loss to the stove body.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sustainable management of solid waste is a global concern, as exemplified by the United Nations Millennium Development Goals (MDG) that 191 member states support. The seventh MDG indirectly advocates for municipal solid waste management (MSWM) by aiming to ensure environmental sustainability into countries’ policies and programs and reverse negative environmental impact. Proper MSWM will likely result in relieving poverty, reducing child mortality, improving maternal health, and preventing disease, which are MDG goals one, four, five, and six, respectively (UNMDG, 2005). Solid waste production is increasing worldwide as the global society strives to obtain a decent quality of life. Several means exist in which the amount of solid waste going to a landfill can be reduced, such as incineration with energy production, composting of organic wastes, and material recovery through recycling, which are all considered sustainable methods by which to manage MSW. In the developing world, composting is already a widely-accepted method to reduce waste fated for the landfill, and incineration for energy recovery can be a costly capital investment for most communities. Therefore, this research focuses on recycling as a solution to the municipal solid waste production problem while considering the three dimensions of sustainability environment, society, and economy. First, twenty-three developing country case studies were quantitatively and qualitatively examined for aspects of municipal solid waste management. The municipal solid waste (MSW) generation and recovery rates, as well as the composition were compiled and assessed. The average MSW generation rate was 0.77 kg/person/day, with recovery rates varying from 5 – 40%. The waste streams of nineteen of these case studies consisted of 0 – 70% recyclable material and 17 – 80% organic material. All twenty-three case studies were analyzed qualitatively by identifying any barriers or incentives to recycling, which justified the creation of twelve factors influencing sustainable municipal solid waste management (MSWM) in developing countries. The presence of regulations, enforcement of laws, and use of incentive schemes constitutes the first factor, Government Policy. Cost of MSWM operations, the budget allocated to MSWM by local to national governments, as well as the stability and reliability of funds comprise the Government Finances factor influencing recycling in the third world. Many case studies indicated that understanding features of a waste stream such as the generation and recovery rates and composition is the first measure in determining proper management solutions, which forms the third factor Waste Characterization. The presence and efficiency of waste collection and segregation by scavengers, municipalities, or private contractors was commonly addressed by the case studies, which justified Waste Collection and Segregation as the fourth factor. Having knowledge of MSWM and an understanding of the linkages between human behavior, waste handling, and health/sanitation/environment comprise the Household Education factor. Individuals’ income influencing waste handling behavior (e.g., reuse, recycling, and illegal dumping), presence of waste collection/disposal fees, and willingness to pay by residents were seen as one of the biggest incentives to recycling, which justified them being combined into the Household Economics factor. The MSWM Administration factor was formed following several references to the presence and effectiveness of private and/or public management of waste through collection, recovery, and disposal influencing recycling activity. Although the MSWM Personnel Education factor was only recognized by six of the twenty-two case studies, the lack of trained laborers and skilled professionals in MSWM positions was a barrier to sustainable MSWM in every case but one. The presence and effectiveness of a comprehensive, integrative, long-term MSWM strategy was highly encouraged by every case study that addressed the tenth factor, MSWM Plan. Although seemingly a subset of private MSWM administration, the existence and profitability of market systems relying on recycled-material throughput, involvement of small businesses, middlemen, and large industries/exporters is deserving of the factor Local Recycled-Material Market. Availability and effective use of technology and/or human workforce and the safety considerations of each were recurrent barriers and incentives to recycling to warrant the Technological and Human Resources factor. The Land Availability factor takes into consideration land attributes such as terrain, ownership, and development which can often times dictate MSWM. Understanding the relationships among the twelve factors influencing recycling in developing countries, made apparent the collaborative nature required of sustainable MSWM. Factors requiring the greatest collaborative inputs include waste collection and segregation, MSWM plan, and local recycled-material market. Aligning each factor to the societal, environmental, and economic dimensions of sustainability revealed the motives behind the institutions contributing to each factor. A correlation between stakeholder involvement and sustainability existed, as supported by the fact that the only three factors driven by all three dimensions of sustainability were the same three that required the greatest collaboration with other factors. With increasing urbanization, advocating for improved health for all through the MDG, and changing consumption patterns resulting in increasing and more complex waste streams, the utilization of the collaboration web offered by this research is ever needed in the developing world. Through its use, the institutions associated with each of the twelve factors can achieve a better understanding of the collaboration necessary and beneficial for more sustainable MSWM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The time course of lake recovery after a reduction in external loading of nutrients is often controlled by conditions in the sediment. Remediation of eutrophication is hindered by the presence of legacy organic carbon deposits, that exert a demand on the terminal electron acceptors of the lake and contribute to problems such as internal nutrient recycling, absence of sediment macrofauna, and flux of toxic metal species into the water column. Being able to quantify the timing of a lake’s response requires determination of the magnitude and lability, i.e., the susceptibility to biodegradation, of the organic carbon within the legacy deposit. This characterization is problematic for organic carbon in sediments because of the presence of different fractions of carbon, which vary from highly labile to refractory. The lability of carbon under varied conditions was tested with a bioassay approach. It was found that the majority of the organic material found in the sediments is conditionally-labile, where mineralization potential is dependent on prevailing conditions. High labilities were noted under oxygenated conditions and a favorable temperature of 30 °C. Lability decreased when oxygen was removed, and was further reduced when the temperature was dropped to the hypolimnetic average of 8° C . These results indicate that reversible preservation mechanisms exist in the sediment, and are able to protect otherwise labile material from being mineralized under in situ conditions. The concept of an active sediment layer, a region in the sediments in which diagenetic reactions occur (with nothing occurring below it), was examined through three lines of evidence. Initially, porewater profiles of oxygen, nitrate, sulfate/total sulfide, ETSA (Electron Transport System Activity- the activity of oxygen, nitrate, iron/manganese, and sulfate), and methane were considered. It was found through examination of the porewater profiles that the edge of diagenesis occurred around 15-20 cm. Secondly, historical and contemporary TOC profiles were compared to find the point at which the profiles were coincident, indicating the depth at which no change has occurred over the (13 year) interval between core collections. This analysis suggested that no diagenesis has occurred in Onondaga Lake sediment below a depth of 15 cm. Finally, the time to 99% mineralization, the t99, was viewed by using a literature estimate of the kinetic rate constant for diagenesis. A t99 of 34 years, or approximately 30 cm of sediment depth, resulted for the slowly decaying carbon fraction. Based on these three lines of evidence , an active sediment layer of 15-20 cm is proposed for Onondaga Lake, corresponding to a time since deposition of 15-20 years. While a large legacy deposit of conditionally-labile organic material remains in the sediments of Onondaga Lake, it becomes clear that preservation, mechanisms that act to shield labile organic carbon from being degraded, protects this material from being mineralized and exerting a demand on the terminal electron acceptors of the lake. This has major implications for management of the lake, as it defines the time course of lake recovery following a reduction in nutrient loading.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Standard procedures for forecasting flood risk (Bulletin 17B) assume annual maximum flood (AMF) series are stationary, meaning the distribution of flood flows is not significantly affected by climatic trends/cycles, or anthropogenic activities within the watershed. Historical flood events are therefore considered representative of future flood occurrences, and the risk associated with a given flood magnitude is modeled as constant over time. However, in light of increasing evidence to the contrary, this assumption should be reconsidered, especially as the existence of nonstationarity in AMF series can have significant impacts on planning and management of water resources and relevant infrastructure. Research presented in this thesis quantifies the degree of nonstationarity evident in AMF series for unimpaired watersheds throughout the contiguous U.S., identifies meteorological, climatic, and anthropogenic causes of this nonstationarity, and proposes an extension of the Bulletin 17B methodology which yields forecasts of flood risk that reflect climatic influences on flood magnitude. To appropriately forecast flood risk, it is necessary to consider the driving causes of nonstationarity in AMF series. Herein, large-scale climate patterns—including El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), and Atlantic Multidecadal Oscillation (AMO)—are identified as influencing factors on flood magnitude at numerous stations across the U.S. Strong relationships between flood magnitude and associated precipitation series were also observed for the majority of sites analyzed in the Upper Midwest and Northeastern regions of the U.S. Although relationships between flood magnitude and associated temperature series are not apparent, results do indicate that temperature is highly correlated with the timing of flood peaks. Despite consideration of watersheds classified as unimpaired, analyses also suggest that identified change-points in AMF series are due to dam construction, and other types of regulation and diversion. Although not explored herein, trends in AMF series are also likely to be partially explained by changes in land use and land cover over time. Results obtained herein suggest that improved forecasts of flood risk may be obtained using a simple modification of the Bulletin 17B framework, wherein the mean and standard deviation of the log-transformed flows are modeled as functions of climate indices associated with oceanic-atmospheric patterns (e.g. AMO, ENSO, NAO, and PDO) with lead times between 3 and 9 months. Herein, one-year ahead forecasts of the mean and standard deviation, and subsequently flood risk, are obtained by applying site specific multivariate regression models, which reflect the phase and intensity of a given climate pattern, as well as possible impacts of coupling of the climate cycles. These forecasts of flood risk are compared with forecasts derived using the existing Bulletin 17B model; large differences in the one-year ahead forecasts are observed in some locations. The increased knowledge of the inherent structure of AMF series and an improved understanding of physical and/or climatic causes of nonstationarity gained from this research should serve as insight for the formulation of a physical-casual based statistical model, incorporating both climatic variations and human impacts, for flood risk over longer planning horizons (e.g., 10-, 50, 100-years) necessary for water resources design, planning, and management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Onondaga Lake has received the municipal effluent and industrial waste from the city of Syracuse for more than a century. Historically, 75 metric tons of mercury were discharged to the lake by chlor-alkali facilities. These legacy deposits of mercury now exist primarily in the lake sediments. Under anoxic conditions, methylmercury is produced in the sediments and can be released to the overlying water. Natural sedimentation processes are continuously burying the mercury deeper into the sediments. Eventually, the mercury will be buried to a depth where it no longer has an impact on the overlying water. In the interim, electron acceptor amendment systems can be installed to retard these chemical releases while the lake naturally recovers. Electron acceptor amendment systems are designed to meet the sediment oxygen demand in the sediment and maintain manageable hypolimnion oxygen concentrations. Historically, designs of these systems have been under designed resulting in failure. This stems from a mischaracterization of the sediment oxygen demand. Turbulence at the sediment water interface has been shown to impact sediment oxygen demand. The turbulence introduced by the electron amendment system can thus increase the sediment oxygen demand, resulting in system failure if turbulence is not factored into the design. Sediment cores were gathered and operated to steady state under several well characterized turbulence conditions. The relationship between sediment oxygen/nitrate demand and turbulence was then quantified and plotted. A maximum demand was exhibited at or above a fluid velocity of 2.0 mm•s-1. Below this velocity, demand decreased rapidly with fluid velocity as zero velocity was approached. Similar relationships were displayed by both oxygen and nitrate cores.