997 resultados para Orthogonal Resolution
Resumo:
The highly variable flagellin-encoding flaA gene has long been used for genotyping Campylobacter jejuni and Campylobacter coli. High-resolution melting (HRM) analysis is emerging as an efficient and robust method for discriminating DNA sequence variants. The objective of this study was to apply HRM analysis to flaA-based genotyping. The initial aim was to identify a suitable flaA fragment. It was found that the PCR primers commonly used to amplify the flaA short variable repeat (SVR) yielded a mixed PCR product unsuitable for HRM analysis. However, a PCR primer set composed of the upstream primer used to amplify the fragment used for flaA restriction fragment length polymorphism (RFLP) analysis and the downstream primer used for flaA SVR amplification generated a very pure PCR product, and this primer set was used for the remainder of the study. Eighty-seven C. jejuni and 15 C. coli isolates were analyzed by flaA HRM and also partial flaA sequencing. There were 47 flaA sequence variants, and all were resolved by HRM analysis. The isolates used had previously also been genotyped using single-nucleotide polymorphisms (SNPs), binary markers, CRISPR HRM, and flaA RFLP. flaAHRManalysis provided resolving power multiplicative to the SNPs, binary markers, and CRISPR HRM and largely concordant with the flaA RFLP. It was concluded that HRM analysis is a promising approach to genotyping based on highly variable genes.
Resumo:
This paper firstly presents an extended ambiguity resolution model that deals with an ill-posed problem and constraints among the estimated parameters. In the extended model, the regularization criterion is used instead of the traditional least squares in order to estimate the float ambiguities better. The existing models can be derived from the general model. Secondly, the paper examines the existing ambiguity searching methods from four aspects: exclusion of nuisance integer candidates based on the available integer constraints; integer rounding; integer bootstrapping and integer least squares estimations. Finally, this paper systematically addresses the similarities and differences between the generalized TCAR and decorrelation methods from both theoretical and practical aspects.
Resumo:
Identifying an individual from surveillance video is a difficult, time consuming and labour intensive process. The proposed system aims to streamline this process by filtering out unwanted scenes and enhancing an individual's face through super-resolution. An automatic face recognition system is then used to identify the subject or present the human operator with likely matches from a database. A person tracker is used to speed up the subject detection and super-resolution process by tracking moving subjects and cropping a region of interest around the subject's face to reduce the number and size of the image frames to be super-resolved respectively. In this paper, experiments have been conducted to demonstrate how the optical flow super-resolution method used improves surveillance imagery for visual inspection as well as automatic face recognition on an Eigenface and Elastic Bunch Graph Matching system. The optical flow based method has also been benchmarked against the ``hallucination'' algorithm, interpolation methods and the original low-resolution images. Results show that both super-resolution algorithms improved recognition rates significantly. Although the hallucination method resulted in slightly higher recognition rates, the optical flow method produced less artifacts and more visually correct images suitable for human consumption.
Resumo:
Currently the Bachelor of Design is the generic degree offered to the four disciplines of Architecture, Landscape Architecture, Industrial Design, and Interior Design within the School of Design at the Queensland University of Technology. Regardless of discipline, Digital Communication is a core unit taken by the 600 first year students entering the Bachelor of Design degree. Within the design disciplines the communication of the designer's intentions is achieved primarily through the use of graphic images, with written information being considered as supportive or secondary. As such, Digital Communication attempts to educate learners in the fundamentals of this graphic design communication, using a generic digital or software tool. Past iterations of the unit have not acknowledged the subtle difference in design communication of the different design disciplines involved, and has used a single generic software tool. Following a review of the unit in 2008, it was decided that a single generic software tool was no longer entirely sufficient. This decision was based on the recognition that there was an increasing emergence of discipline specific digital tools, and an expressed student desire and apparent aptitude to learn these discipline specific tools. As a result the unit was reconstructed in 2009 to offer both discipline specific and generic software instruction, if elected by the student. This paper, apart from offering the general context and pedagogy of the existing and restructured units, will more importantly offer research data that validates the changes made to the unit. Most significant of this new data is the results of surveys that authenticate actual student aptitude versus desire in learning discipline specific tools. This is done through an exposure of student self efficacy in problem resolution and technological prowess - generally and specifically within the unit. More traditional means of validation is also presented that includes the results of the generic university-wide Learning Experience Survey of the unit, as well as a comparison between the assessment results of the restructured unit versus the previous year.
Resumo:
Uncooperative iris identification systems at a distance and on the move often suffer from poor resolution and poor focus of the captured iris images. The lack of pixel resolution and well-focused images significantly degrades the iris recognition performance. This paper proposes a new approach to incorporate the focus score into a reconstruction-based super-resolution process to generate a high resolution iris image from a low resolution and focus inconsistent video sequence of an eye. A reconstruction-based technique, which can incorporate middle and high frequency components from multiple low resolution frames into one desired super-resolved frame without introducing false high frequency components, is used. A new focus assessment approach is proposed for uncooperative iris at a distance and on the move to improve performance for variations in lighting, size and occlusion. A novel fusion scheme is then proposed to incorporate the proposed focus score into the super-resolution process. The experiments conducted on the The Multiple Biometric Grand Challenge portal database shows that our proposed approach achieves an EER of 2.1%, outperforming the existing state-of-the-art averaging signal-level fusion approach by 19.2% and the robust mean super-resolution approach by 8.7%.
Resumo:
Open access reforms to railway regulations allow multiple train operators to provide rail services on a common infrastructure. As railway operations are now independently managed by different stakeholders, conflicts in operations may arise, and there have been attempts to derive an effective access charge regime so that these conflicts may be resolved. One approach is by direct negotiation between the infrastructure manager and the train service providers. Despite the substantial literature on the topic, few consider the benefits of employing computer simulation as an evaluation tool for railway operational activities such as access pricing. This article proposes a multi-agent system (MAS) framework for the railway open market and demonstrates its feasibility by modelling the negotiation between an infrastructure provider and a train service operator. Empirical results show that the model is capable of resolving operational conflicts according to market demand.
Resumo:
In general, simple and traditional methods are applied to resolve traffic conflicts at railway junctions. They are, however, either inefficient or computationally demanding. A simple genetic algorithm is presented to enable a search for a near optimal resolution to be carried out while meeting the constraints on generation evolution and minimising the search time.
Resumo:
Purpose of study: Traffic conflicts occur when trains on different routes approach a converging junction in a railway network at the same time. To prevent collisions, a right-of-way assignment is needed to control the order in which the trains should pass the junction. Such control action inevitably requires the braking and/or stopping of trains, which lengthens their travelling times and leads to delays. Train delays cause a loss of punctuality and hence directly affect the quality of service. It is therefore important to minimise the delays by devising a suitable right-of-way assignment. One of the major difficulties in attaining the optimal right-of-way assignment is that the number of feasible assignments increases dramatically with the number of trains. Connected-junctions further complicate the problem. Exhaustive search for the optimal solution is time-consuming and infeasible for area control (multi-junction). Even with the more intelligent deterministic optimisation method revealed in [1], the computation demand is still considerable, which hinders real-time control. In practice, as suggested in [2], the optimality may be traded off by shorter computation time, and heuristic searches provide alternatives for this optimisation problem.
Resumo:
This study investigates the application of local search methods on the railway junction traffic conflict-resolution problem, with the objective of attaining a quick and reasonable solution. A procedure based on local search relies on finding a better solution than the current one by a search in the neighbourhood of the current one. The structure of neighbourhood is therefore very important to an efficient local search procedure. In this paper, the formulation of the structure of the solution, which is the right-of-way sequence assignment, is first described. Two new neighbourhood definitions are then proposed and the performance of the corresponding local search procedures is evaluated by simulation. It has been shown that they provide similar results but they can be used to handle different traffic conditions and system requirements.
Resumo:
In this paper we present a novel distributed coding protocol for multi-user cooperative networks. The proposed distributed coding protocol exploits the existing orthogonal space-time block codes to achieve higher diversity gain by repeating the code across time and space (available relay nodes). The achievable diversity gain depends on the number of relay nodes that can fully decode the signal from the source. These relay nodes then form space-time codes to cooperatively relay to the destination using number of time slots. However, the improved diversity gain is archived at the expense of the transmission rate. The design principles of the proposed space-time distributed code and the issues related to transmission rate and diversity trade off is discussed in detail. We show that the proposed distributed space-time coding protocol out performs existing distributed codes with a variable transmission rate.
Resumo:
In this paper, we presented an automatic system for precise urban road model reconstruction based on aerial images with high spatial resolution. The proposed approach consists of two steps: i) road surface detection and ii) road pavement marking extraction. In the first step, support vector machine (SVM) was utilized to classify the images into two categories: road and non-road. In the second step, road lane markings are further extracted on the generated road surface based on 2D Gabor filters. The experiments using several pan-sharpened aerial images of Brisbane, Queensland have validated the proposed method.