975 resultados para Optimization analysis
Resumo:
Small centrifugal compressors are more and more widely used in many industrialsystems because of their higher efficiency and better off-design performance comparing to piston and scroll compressors as while as higher work coefficient perstage than in axial compressors. Higher efficiency is always the aim of the designer of compressors. In the present work, the influence of four partsof a small centrifugal compressor that compresses heavy molecular weight real gas has been investigated in order to achieve higher efficiency. Two parts concern the impeller: tip clearance and the circumferential position of the splitter blade. The other two parts concern the diffuser: the pinch shape and vane shape. Computational fluid dynamics is applied in this study. The Reynolds averaged Navier-Stokes flow solver Finflo is used. The quasi-steady approach is utilized. Chien's k-e turbulence model is used to model the turbulence. A new practical real gas model is presented in this study. The real gas model is easily generated, accuracy controllable and fairly fast. The numerical results and measurements show good agreement. The influence of tip clearance on the performance of a small compressor is obvious. The pressure ratio and efficiency are decreased as the size of tip clearance is increased, while the total enthalpy rise keeps almost constant. The decrement of the pressure ratio and efficiency is larger at higher mass flow rates and smaller at lower mass flow rates. The flow angles at the inlet and outlet of the impeller are increased as the size of tip clearance is increased. The results of the detailed flow field show that leakingflow is the main reason for the performance drop. The secondary flow region becomes larger as the size of tip clearance is increased and the area of the main flow is compressed. The flow uniformity is then decreased. A detailed study shows that the leaking flow rate is higher near the exit of the impeller than that near the inlet of the impeller. Based on this phenomenon, a new partiallyshrouded impeller is used. The impeller is shrouded near the exit of the impeller. The results show that the flow field near the exit of the impeller is greatly changed by the partially shrouded impeller, and better performance is achievedthan with the unshrouded impeller. The loading distribution on the impeller blade and the flow fields in the impeller is changed by moving the splitter of the impeller in circumferential direction. Moving the splitter slightly to the suction side of the long blade can improve the performance of the compressor. The total enthalpy rise is reduced if only the leading edge of the splitter ismoved to the suction side of the long blade. The performance of the compressor is decreased if the blade is bended from the radius direction at the leading edge of the splitter. The total pressure rise and the enthalpy rise of thecompressor are increased if pinch is used at the diffuser inlet. Among the fivedifferent pinch shape configurations, at design and lower mass flow rates the efficiency of a straight line pinch is the highest, while at higher mass flow rate, the efficiency of a concave pinch is the highest. The sharp corner of the pinch is the main reason for the decrease of efficiency and should be avoided. The variation of the flow angles entering the diffuser in spanwise direction is decreased if pinch is applied. A three-dimensional low solidity twisted vaned diffuser is designed to match the flow angles entering the diffuser. The numerical results show that the pressure recovery in the twisted diffuser is higher than in a conventional low solidity vaned diffuser, which also leads to higher efficiency of the twisted diffuser. Investigation of the detailed flow fields shows that the separation at lower mass flow rate in the twisted diffuser is later than in the conventional low solidity vaned diffuser, which leads to a possible wider flow range of the twisted diffuser.
Resumo:
Analyzing the state of the art in a given field in order to tackle a new problem is always a mandatory task. Literature provides surveys based on summaries of previous studies, which are often based on theoretical descriptions of the methods. An engineer, however, requires some evidence from experimental evaluations in order to make the appropriate decision when selecting a technique for a problem. This is what we have done in this paper: experimentally analyzed a set of representative state-of-the-art techniques in the problem we are dealing with, namely, the road passenger transportation problem. This is an optimization problem in which drivers should be assigned to transport services, fulfilling some constraints and minimizing some function cost. The experimental results have provided us with good knowledge of the properties of several methods, such as modeling expressiveness, anytime behavior, computational time, memory requirements, parameters, and free downloadable tools. Based on our experience, we are able to choose a technique to solve our problem. We hope that this analysis is also helpful for other engineers facing a similar problem
Resumo:
A simple liquid chromatographic method was optimized for the quantitative determination of terbinafine in pharmaceutical hydroalcoholic solutions and tablets, and was also employed for a tablet dissolution test. The analysis was carried out using a RP-C18 (250 mm × 4.6 mm, 5 μm) Vertical® column, UV-Vis detection at 254 nm, and a methanol-water (95:5, v/v) mobile phase at a flow-rate of 1.2 mL min-1. Method validation investigated parameters such as linearity, precision, accuracy, robustness and specificity, which gave results within the acceptable range. The tablets dissolution was quite fast: 80% of the drug was dissolved within 15 min.
Resumo:
A statistical mixture-design technique was used to study the effects of different solvents and their mixtures on the yield, total polyphenol content, and antioxidant capacity of the crude extracts from the bark of Schinus terebinthifolius Raddi (Anacardiaceae). The experimental results and their response-surface models showed that ternary mixtures with equal portions of all the three solvents (water, ethanol and acetone) were better than the binary mixtures in generating crude extracts with the highest yield (22.04 ± 0.48%), total polyphenol content (29.39 ± 0.39%), and antioxidant capacity (6.38 ± 0.21). An analytical method was developed and validated for the determination of total polyphenols in the extracts. Optimal conditions for the various parameters in this analytical method, namely, the time for the chromophoric reaction to stabilize, wavelength of the absorption maxima to be monitored, the reference standard and the concentration of sodium carbonate were determined to be 5 min, 780 nm, pyrogallol, and 14.06% w v-1, respectively. UV-Vis spectrophotometric monitoring of the reaction under these conditions proved the method to be linear, specific, precise, accurate, reproducible, robust, and easy to perform.
Resumo:
In any decision making under uncertainties, the goal is mostly to minimize the expected cost. The minimization of cost under uncertainties is usually done by optimization. For simple models, the optimization can easily be done using deterministic methods.However, many models practically contain some complex and varying parameters that can not easily be taken into account using usual deterministic methods of optimization. Thus, it is very important to look for other methods that can be used to get insight into such models. MCMC method is one of the practical methods that can be used for optimization of stochastic models under uncertainty. This method is based on simulation that provides a general methodology which can be applied in nonlinear and non-Gaussian state models. MCMC method is very important for practical applications because it is a uni ed estimation procedure which simultaneously estimates both parameters and state variables. MCMC computes the distribution of the state variables and parameters of the given data measurements. MCMC method is faster in terms of computing time when compared to other optimization methods. This thesis discusses the use of Markov chain Monte Carlo (MCMC) methods for optimization of Stochastic models under uncertainties .The thesis begins with a short discussion about Bayesian Inference, MCMC and Stochastic optimization methods. Then an example is given of how MCMC can be applied for maximizing production at a minimum cost in a chemical reaction process. It is observed that this method performs better in optimizing the given cost function with a very high certainty.
Resumo:
This paper presents the development of a two-dimensional interactive software environment for structural analysis and optimization based on object-oriented programming using the C++ language. The main feature of the software is the effective integration of several computational tools into graphical user interfaces implemented in the Windows-98 and Windows-NT operating systems. The interfaces simplify data specification in the simulation and optimization of two-dimensional linear elastic problems. NURBS have been used in the software modules to represent geometric and graphical data. Extensions to the analysis of three-dimensional problems have been implemented and are also discussed in this paper.
Resumo:
Identification of low-dimensional structures and main sources of variation from multivariate data are fundamental tasks in data analysis. Many methods aimed at these tasks involve solution of an optimization problem. Thus, the objective of this thesis is to develop computationally efficient and theoretically justified methods for solving such problems. Most of the thesis is based on a statistical model, where ridges of the density estimated from the data are considered as relevant features. Finding ridges, that are generalized maxima, necessitates development of advanced optimization methods. An efficient and convergent trust region Newton method for projecting a point onto a ridge of the underlying density is developed for this purpose. The method is utilized in a differential equation-based approach for tracing ridges and computing projection coordinates along them. The density estimation is done nonparametrically by using Gaussian kernels. This allows application of ridge-based methods with only mild assumptions on the underlying structure of the data. The statistical model and the ridge finding methods are adapted to two different applications. The first one is extraction of curvilinear structures from noisy data mixed with background clutter. The second one is a novel nonlinear generalization of principal component analysis (PCA) and its extension to time series data. The methods have a wide range of potential applications, where most of the earlier approaches are inadequate. Examples include identification of faults from seismic data and identification of filaments from cosmological data. Applicability of the nonlinear PCA to climate analysis and reconstruction of periodic patterns from noisy time series data are also demonstrated. Other contributions of the thesis include development of an efficient semidefinite optimization method for embedding graphs into the Euclidean space. The method produces structure-preserving embeddings that maximize interpoint distances. It is primarily developed for dimensionality reduction, but has also potential applications in graph theory and various areas of physics, chemistry and engineering. Asymptotic behaviour of ridges and maxima of Gaussian kernel densities is also investigated when the kernel bandwidth approaches infinity. The results are applied to the nonlinear PCA and to finding significant maxima of such densities, which is a typical problem in visual object tracking.
Resumo:
Almost every problem of design, planning and management in the technical and organizational systems has several conflicting goals or interests. Nowadays, multicriteria decision models represent a rapidly developing area of operation research. While solving practical optimization problems, it is necessary to take into account various kinds of uncertainty due to lack of data, inadequacy of mathematical models to real-time processes, calculation errors, etc. In practice, this uncertainty usually leads to undesirable outcomes where the solutions are very sensitive to any changes in the input parameters. An example is the investment managing. Stability analysis of multicriteria discrete optimization problems investigates how the found solutions behave in response to changes in the initial data (input parameters). This thesis is devoted to the stability analysis in the problem of selecting investment project portfolios, which are optimized by considering different types of risk and efficiency of the investment projects. The stability analysis is carried out in two approaches: qualitative and quantitative. The qualitative approach describes the behavior of solutions in conditions with small perturbations in the initial data. The stability of solutions is defined in terms of existence a neighborhood in the initial data space. Any perturbed problem from this neighborhood has stability with respect to the set of efficient solutions of the initial problem. The other approach in the stability analysis studies quantitative measures such as stability radius. This approach gives information about the limits of perturbations in the input parameters, which do not lead to changes in the set of efficient solutions. In present thesis several results were obtained including attainable bounds for the stability radii of Pareto optimal and lexicographically optimal portfolios of the investment problem with Savage's, Wald's criteria and criteria of extreme optimism. In addition, special classes of the problem when the stability radii are expressed by the formulae were indicated. Investigations were completed using different combinations of Chebyshev's, Manhattan and Hölder's metrics, which allowed monitoring input parameters perturbations differently.
Resumo:
The cellular structure of healthy food products, with added dietary fiber and low in calories, is an important factor that contributes to the assessment of quality, which can be quantified by image analysis of visual texture. This study seeks to compare image analysis techniques (binarization using Otsu’s method and the default ImageJ algorithm, a variation of the iterative intermeans method) for quantification of differences in the crumb structure of breads made with different percentages of whole-wheat flour and fat replacer, and discuss the behavior of the parameters number of cells, mean cell area, cell density, and circularity using response surface methodology. Comparative analysis of the results achieved with the Otsu and default ImageJ algorithms showed a significant difference between the studied parameters. The Otsu method demonstrated the crumb structure of the analyzed breads more reliably than the default ImageJ algorithm, and is thus the most suitable in terms of structural representation of the crumb texture.
Resumo:
Abstract Caprine Coalho cheese presents great potential for a typical protected designation of origin, considering that this traditional Brazilian cheese presents a slightly salty and acid flavor, combined with a unique texture. This study optimized the HS-SPME-GC-MS methodology for volatile analysis of Coalho cheese, which can be used as a tool to help in the identification of the distinctive aroma profile of this cheese. The conditions of equilibrium time, extraction temperature and time were optimized using the statistical tool factorial experimental design 23, and applying the desirability function. After the evaluation, it was concluded that the optimum extraction conditions comprised equilibrium and extraction time of 20 and 40 minutes, respectively; and ideal extraction temperature of 45 °C. The optimum extraction of volatile compounds in goat Coalho cheese captured 32 volatile compounds: 5 alcohols, 5 esters, 3 ketones, 6 acids, 3 aldehydes, 3 terpenes, and 7 hydrocarbons.
Resumo:
To ensure quality of machined products at minimum machining costs and maximum machining effectiveness, it is very important to select optimum parameters when metal cutting machine tools are employed. Traditionally, the experience of the operator plays a major role in the selection of optimum metal cutting conditions. However, attaining optimum values each time by even a skilled operator is difficult. The non-linear nature of the machining process has compelled engineers to search for more effective methods to attain optimization. The design objective preceding most engineering design activities is simply to minimize the cost of production or to maximize the production efficiency. The main aim of research work reported here is to build robust optimization algorithms by exploiting ideas that nature has to offer from its backyard and using it to solve real world optimization problems in manufacturing processes.In this thesis, after conducting an exhaustive literature review, several optimization techniques used in various manufacturing processes have been identified. The selection of optimal cutting parameters, like depth of cut, feed and speed is a very important issue for every machining process. Experiments have been designed using Taguchi technique and dry turning of SS420 has been performed on Kirlosker turn master 35 lathe. Analysis using S/N and ANOVA were performed to find the optimum level and percentage of contribution of each parameter. By using S/N analysis the optimum machining parameters from the experimentation is obtained.Optimization algorithms begin with one or more design solutions supplied by the user and then iteratively check new design solutions, relative search spaces in order to achieve the true optimum solution. A mathematical model has been developed using response surface analysis for surface roughness and the model was validated using published results from literature.Methodologies in optimization such as Simulated annealing (SA), Particle Swarm Optimization (PSO), Conventional Genetic Algorithm (CGA) and Improved Genetic Algorithm (IGA) are applied to optimize machining parameters while dry turning of SS420 material. All the above algorithms were tested for their efficiency, robustness and accuracy and observe how they often outperform conventional optimization method applied to difficult real world problems. The SA, PSO, CGA and IGA codes were developed using MATLAB. For each evolutionary algorithmic method, optimum cutting conditions are provided to achieve better surface finish.The computational results using SA clearly demonstrated that the proposed solution procedure is quite capable in solving such complicated problems effectively and efficiently. Particle Swarm Optimization (PSO) is a relatively recent heuristic search method whose mechanics are inspired by the swarming or collaborative behavior of biological populations. From the results it has been observed that PSO provides better results and also more computationally efficient.Based on the results obtained using CGA and IGA for the optimization of machining process, the proposed IGA provides better results than the conventional GA. The improved genetic algorithm incorporating a stochastic crossover technique and an artificial initial population scheme is developed to provide a faster search mechanism. Finally, a comparison among these algorithms were made for the specific example of dry turning of SS 420 material and arriving at optimum machining parameters of feed, cutting speed, depth of cut and tool nose radius for minimum surface roughness as the criterion. To summarize, the research work fills in conspicuous gaps between research prototypes and industry requirements, by simulating evolutionary procedures seen in nature that optimize its own systems.
Resumo:
The optimal formulation for the preparation of amaranth flour films plasticized with glycerol and sorbitol was obtained by a multi-response analysis. The optimization aimed to achieve films with higher resistance to break, moderate elongation and lower solubility in water. The influence of plasticizer concentration (Cg, glycerol or Cs, sorbitol) and process temperature (Tp) on the mechanical properties and solubility of the amaranth flour films was initially studied by response surface methodology (RSM). The optimized conditions obtained were Cg 20.02 g glycerol/100 g flour and Tp 75 degrees C, and Cs 29.6 g sorbitol/100 g flour and Tp 75 degrees C. Characterization of the films prepared with these formulations revealed that the optimization methodology employed in this work was satisfactory. Sorbitol was the most suitable plasticizer. It furnished amaranth flour films that were more resistant to break and less permeable to oxygen, due to its greater miscibility with the biopolymers present in the flour and its lower affinity for water. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Optimization of photo-Fenton degradation of copper phthalocyanine blue was achieved by response surface methodology (RSM) constructed with the aid of a sequential injection analysis (SIA) system coupled to a homemade photo-reactor. Highest degradation percentage was obtained at the following conditions [H(2)O(2)]/[phthalocyanine] = 7, [H(2)O(2)]/[FeSO(4)] = 10, pH = 2.5, and stopped flow time in the photo reactor = 30 s. The SIA system was designed to prepare a monosegment containing the reagents and sample, to pump it toward the photo-reactor for the specified time and send the products to a flow-through spectrophotometer for monitoring the color reduction of the dye. Changes in parameters such as reagent molar ratios. residence time and pH were made by modifications in the software commanding the SI system, without the need for physical reconfiguration of reagents around the selection valve. The proposed procedure and system fed the statistical program with degradation data for fast construction of response surface plots. After optimization, 97% of the dye was degraded. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This work presents the use of sequential injection analysis (SIA) and the response surface methodology as a tool for optimization of Fenton-based processes. Alizarin red S dye (C.I. 58005) was used as a model compound for the anthraquinones family. whose pigments have a large use in coatings industry. The following factors were considered: [H(2)O(2)]:[Alizarin] and [H(2)O(2)]:[FeSO(4)] ratios and pH. The SIA system was designed to add reagents to the reactor and to perform on-line sampling of the reaction medium, sending the samples to a flow-through spectrophotometer for monitoring the color reduction of the dye. The proposed system fed the statistical program with degradation data for fast construction of response surface plots. After optimization, 99.7% of the dye was degraded and the TOC content was reduced to 35% of the original value. Low reagents consumption and high sampling throughput were the remarkable features of the SIA system. (C) 2008 Published by Elsevier B.V.
Resumo:
In a northern European climate a typical solar combisystem for a single family house normally saves between 10 and 30 % of the auxiliary energy needed for space heating and domestic water heating. It is considered uneconomical to dimension systems for higher energy savings. Overheating problems may also occur. One way of avoiding these problems is to use a collector that is designed so that it has a low optical efficiency in summer, when the solar elevation is high and the load is small, and a high optical efficiency in early spring and late fall when the solar elevation is low and the load is large.The study investigates the possibilities to design the system and, in particular, the collector optics, in order to match the system performance with the yearly variations of the heating load and the solar irradiation. It seems possible to design practically viable load adapted collectors, and to use them for whole roofs ( 40 m2) without causing more overheating stress on the system than with a standard 10 m2 system. The load adapted collectors collect roughly as much energy per unit area as flat plate collectors, but they may be produced at a lower cost due to lower material costs. There is an additional potential for a cost reduction since it is possible to design the load adapted collector for low stagnation temperatures making it possible to use less expensive materials. One and the same collector design is suitable for a wide range of system sizes and roof inclinations. The report contains descriptions of optimized collector designs, properties of realistic collectors, and results of calculations of system output, stagnation performance and cost performance. Appropriate computer tools for optical analysis, optimization of collectors in systems and a very fast simulation model have been developed.