998 resultados para Optimality conditions


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper a framework based on the decomposition of the first-order optimality conditions is described and applied to solve the Probabilistic Power Flow (PPF) problem in a coordinated but decentralized way in the context of multi-area power systems. The purpose of the decomposition framework is to solve the problem through a process of solving smaller subproblems, associated with each area of the power system, iteratively. This strategy allows the probabilistic analysis of the variables of interest, in a particular area, without explicit knowledge of network data of the other interconnected areas, being only necessary to exchange border information related to the tie-lines between areas. An efficient method for probabilistic analysis, considering uncertainty in n system loads, is applied. The proposal is to use a particular case of the point estimate method, known as Two-Point Estimate Method (TPM), rather than the traditional approach based on Monte Carlo simulation. The main feature of the TPM is that it only requires resolve 2n power flows for to obtain the behavior of any random variable. An iterative coordination algorithm between areas is also presented. This algorithm solves the Multi-Area PPF problem in a decentralized way, ensures the independent operation of each area and integrates the decomposition framework and the TPM appropriately. The IEEE RTS-96 system is used in order to show the operation and effectiveness of the proposed approach and the Monte Carlo simulations are used to validation of the results. © 2011 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This article presents and discusses a maximum principle for infinite horizon constrained optimal control problems with a cost functional depending on the state at the final time. The main feature of these optimality conditions is that, under reasonably weak assumptions, the multiplier is shown to satisfy a novel transversality condition at infinite time. It is also shown that these conditions can also be obtained for impulsive control problems whose dynamics are given by measure driven differential equations. © 2011 IFAC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Matemática - IBILCE

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Matemática - IBILCE

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present two new constraint qualifications (CQs) that are weaker than the recently introduced relaxed constant positive linear dependence (RCPLD) CQ. RCPLD is based on the assumption that many subsets of the gradients of the active constraints preserve positive linear dependence locally. A major open question was to identify the exact set of gradients whose properties had to be preserved locally and that would still work as a CQ. This is done in the first new CQ, which we call the constant rank of the subspace component (CRSC) CQ. This new CQ also preserves many of the good properties of RCPLD, such as local stability and the validity of an error bound. We also introduce an even weaker CQ, called the constant positive generator (CPG), which can replace RCPLD in the analysis of the global convergence of algorithms. We close this work by extending convergence results of algorithms belonging to all the main classes of nonlinear optimization methods: sequential quadratic programming, augmented Lagrangians, interior point algorithms, and inexact restoration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work we are concerned with the analysis and numerical solution of Black-Scholes type equations arising in the modeling of incomplete financial markets and an inverse problem of determining the local volatility function in a generalized Black-Scholes model from observed option prices. In the first chapter a fully nonlinear Black-Scholes equation which models transaction costs arising in option pricing is discretized by a new high order compact scheme. The compact scheme is proved to be unconditionally stable and non-oscillatory and is very efficient compared to classical schemes. Moreover, it is shown that the finite difference solution converges locally uniformly to the unique viscosity solution of the continuous equation. In the next chapter we turn to the calibration problem of computing local volatility functions from market data in a generalized Black-Scholes setting. We follow an optimal control approach in a Lagrangian framework. We show the existence of a global solution and study first- and second-order optimality conditions. Furthermore, we propose an algorithm that is based on a globalized sequential quadratic programming method and a primal-dual active set strategy, and present numerical results. In the last chapter we consider a quasilinear parabolic equation with quadratic gradient terms, which arises in the modeling of an optimal portfolio in incomplete markets. The existence of weak solutions is shown by considering a sequence of approximate solutions. The main difficulty of the proof is to infer the strong convergence of the sequence. Furthermore, we prove the uniqueness of weak solutions under a smallness condition on the derivatives of the covariance matrices with respect to the solution, but without additional regularity assumptions on the solution. The results are illustrated by a numerical example.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We develop a novel remote sensing technique for the observation of waves on the ocean surface. Our method infers the 3-D waveform and radiance of oceanic sea states via a variational stereo imagery formulation. In this setting, the shape and radiance of the wave surface are given by minimizers of a composite energy functional that combines a photometric matching term along with regularization terms involving the smoothness of the unknowns. The desired ocean surface shape and radiance are the solution of a system of coupled partial differential equations derived from the optimality conditions of the energy functional. The proposed method is naturally extended to study the spatiotemporal dynamics of ocean waves and applied to three sets of stereo video data. Statistical and spectral analysis are carried out. Our results provide evidence that the observed omnidirectional wavenumber spectrum S(k) decays as k-2.5 is in agreement with Zakharov's theory (1999). Furthermore, the 3-D spectrum of the reconstructed wave surface is exploited to estimate wave dispersion and currents.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a registration method for images with global illumination variations. The method is based on a joint iterative optimization (geometric and photometric) of the L1 norm of the intensity error. Two strategies are compared to directly find the appropriate intensity transformation within each iteration: histogram specification and the solution obtained by analyzing the necessary optimality conditions. Such strategies reduce the search space of the joint optimization to that of the geometric transformation between the images.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The economic design of a distillation column or distillation sequences is a challenging problem that has been addressed by superstructure approaches. However, these methods have not been widely used because they lead to mixed-integer nonlinear programs that are hard to solve, and require complex initialization procedures. In this article, we propose to address this challenging problem by substituting the distillation columns by Kriging-based surrogate models generated via state of the art distillation models. We study different columns with increasing difficulty, and show that it is possible to get accurate Kriging-based surrogate models. The optimization strategy ensures that convergence to a local optimum is guaranteed for numerical noise-free models. For distillation columns (slightly noisy systems), Karush–Kuhn–Tucker optimality conditions cannot be tested directly on the actual model, but still we can guarantee a local minimum in a trust region of the surrogate model that contains the actual local minimum.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we examine multi-objective linear programming problems in the face of data uncertainty both in the objective function and the constraints. First, we derive a formula for the radius of robust feasibility guaranteeing constraint feasibility for all possible scenarios within a specified uncertainty set under affine data parametrization. We then present numerically tractable optimality conditions for minmax robust weakly efficient solutions, i.e., the weakly efficient solutions of the robust counterpart. We also consider highly robust weakly efficient solutions, i.e., robust feasible solutions which are weakly efficient for any possible instance of the objective matrix within a specified uncertainty set, providing lower bounds for the radius of highly robust efficiency guaranteeing the existence of this type of solutions under affine and rank-1 objective data uncertainty. Finally, we provide numerically tractable optimality conditions for highly robust weakly efficient solutions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper investigates a cross-layer design approach for minimizing energy consumption and maximizing network lifetime (NL) of a multiple-source and single-sink (MSSS) WSN with energy constraints. The optimization problem for MSSS WSN can be formulated as a mixed integer convex optimization problem with the adoption of time division multiple access (TDMA) in medium access control (MAC) layer, and it becomes a convex problem by relaxing the integer constraint on time slots. Impacts of data rate, link access and routing are jointly taken into account in the optimization problem formulation. Both linear and planar network topologies are considered for NL maximization (NLM). With linear MSSS and planar single-source and single-sink (SSSS) topologies, we successfully use Karush-Kuhn-Tucker (KKT) optimality conditions to derive analytical expressions of the optimal NL when all nodes are exhausted simultaneously. The problem for planar MSSS topology is more complicated, and a decomposition and combination (D&C) approach is proposed to compute suboptimal solutions. An analytical expression of the suboptimal NL is derived for a small scale planar network. To deal with larger scale planar network, an iterative algorithm is proposed for the D&C approach. Numerical results show that the upper-bounds of the network lifetime obtained by our proposed optimization models are tight. Important insights into the NL and benefits of cross-layer design for WSN NLM are obtained.