957 resultados para Optimal reactive dispatch problem
Resumo:
In this paper is presented a new approach for optimal power flow problem. This approach is based on the modified barrier function and the primal-dual logarithmic barrier method. A Lagrangian function is associated with the modified problem. The first-order necessary conditions for optimality are fulfilled by Newton's method, and by updating the barrier terms. The effectiveness of the proposed approach has been examined by solving the Brazilian 53-bus, IEEE118-bus and IEEE162-bus systems.
Resumo:
This paper proposes a technique for solving the multiobjective environmental/economic dispatch problem using the weighted sum and ε-constraint strategies, which transform the problem into a set of single-objective problems. In the first strategy, the objective function is a weighted sum of the environmental and economic objective functions. The second strategy considers one of the objective functions: in this case, the environmental function, as a problem constraint, bounded above by a constant. A specific predictor-corrector primal-dual interior point method which uses the modified log barrier is proposed for solving the set of single-objective problems generated by such strategies. The purpose of the modified barrier approach is to solve the problem with relaxation of its original feasible region, enabling the method to be initialized with unfeasible points. The tests involving the proposed solution technique indicate i) the efficiency of the proposed method with respect to the initialization with unfeasible points, and ii) its ability to find a set of efficient solutions for the multiobjective environmental/economic dispatch problem.
Resumo:
The aim of solving the Optimal Power Flow problem is to determine the optimal state of an electric power transmission system, that is, the voltage magnitude and phase angles and the tap ratios of the transformers that optimize the performance of a given system, while satisfying its physical and operating constraints. The Optimal Power Flow problem is modeled as a large-scale mixed-discrete nonlinear programming problem. This paper proposes a method for handling the discrete variables of the Optimal Power Flow problem. A penalty function is presented. Due to the inclusion of the penalty function into the objective function, a sequence of nonlinear programming problems with only continuous variables is obtained and the solutions of these problems converge to a solution of the mixed problem. The obtained nonlinear programming problems are solved by a Primal-Dual Logarithmic-Barrier Method. Numerical tests using the IEEE 14, 30, 118 and 300-Bus test systems indicate that the method is efficient. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Abstract not available
Resumo:
Reactive power is critical to the operation of the power networks on both safety aspects and economic aspects. Unreasonable distribution of the reactive power would severely affect the power quality of the power networks and increases the transmission loss. Currently, the most economical and practical approach to minimizing the real power loss remains using reactive power dispatch method. Reactive power dispatch problem is nonlinear and has both equality constraints and inequality constraints. In this thesis, PSO algorithm and MATPOWER 5.1 toolbox are applied to solve the reactive power dispatch problem. PSO is a global optimization technique that is equipped with excellent searching capability. The biggest advantage of PSO is that the efficiency of PSO is less sensitive to the complexity of the objective function. MATPOWER 5.1 is an open source MATLAB toolbox focusing on solving the power flow problems. The benefit of MATPOWER is that its code can be easily used and modified. The proposed method in this thesis minimizes the real power loss in a practical power system and determines the optimal placement of a new installed DG. IEEE 14 bus system is used to evaluate the performance. Test results show the effectiveness of the proposed method.
Resumo:
In this work the multiarea optimal power flow (OPF) problem is decoupled into areas creating a set of regional OPF subproblems. The objective is to solve the optimal dispatch of active and reactive power for a determined area, without interfering in the neighboring areas. The regional OPF subproblems are modeled as a large-scale nonlinear constrained optimization problem, with both continuous and discrete variables. Constraints violated are handled as objective functions of the problem. In this way the original problem is converted to a multiobjective optimization problem, and a specifically-designed multiobjective evolutionary algorithm is proposed for solving the regional OPF subproblems. The proposed approach has been examined and tested on the RTS-96 and IEEE 354-bus test systems. Good quality suboptimal solutions were obtained, proving the effectiveness and robustness of the proposed approach. ©2009 IEEE.
Resumo:
Ancillary service plays a key role in maintaining operation security of the power system in a competitive electricity market. The spinning reserve is one of the most important ancillary services that should be provided effectively. This paper presents the design of an integrated market for energy and spinning reserve service with particular emphasis on coordinated dispatch of bulk power and spinning reserve services. A new market dispatching mechanism has been developed to minimize the cost of service while maintaining system security. Genetic algorithms (GA) are used for finding the global optimal solutions for this dispatch problem. Case studies and corresponding analyses have been carried out to demonstrate and discuss the efficiency and usefulness of the proposed method.
Resumo:
The optimal power flow problem has been widely studied in order to improve power systems operation and planning. For real power systems, the problem is formulated as a non-linear and as a large combinatorial problem. The first approaches used to solve this problem were based on mathematical methods which required huge computational efforts. Lately, artificial intelligence techniques, such as metaheuristics based on biological processes, were adopted. Metaheuristics require lower computational resources, which is a clear advantage for addressing the problem in large power systems. This paper proposes a methodology to solve optimal power flow on economic dispatch context using a Simulated Annealing algorithm inspired on the cooling temperature process seen in metallurgy. The main contribution of the proposed method is the specific neighborhood generation according to the optimal power flow problem characteristics. The proposed methodology has been tested with IEEE 6 bus and 30 bus networks. The obtained results are compared with other wellknown methodologies presented in the literature, showing the effectiveness of the proposed method.
Resumo:
In the energy management of the isolated operation of small power system, the economic scheduling of the generation units is a crucial problem. Applying right timing can maximize the performance of the supply. The optimal operation of a wind turbine, a solar unit, a fuel cell and a storage battery is searched by a mixed-integer linear programming implemented in General Algebraic Modeling Systems (GAMS). A Virtual Power Producer (VPP) can optimal operate the generation units, assured the good functioning of equipment, including the maintenance, operation cost and the generation measurement and control. A central control at system allows a VPP to manage the optimal generation and their load control. The application of methodology to a real case study in Budapest Tech, demonstrates the effectiveness of this method to solve the optimal isolated dispatch of the DC micro-grid renewable energy park. The problem has been converged in 0.09 s and 30 iterations.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Executive Summary The unifying theme of this thesis is the pursuit of a satisfactory ways to quantify the riskureward trade-off in financial economics. First in the context of a general asset pricing model, then across models and finally across country borders. The guiding principle in that pursuit was to seek innovative solutions by combining ideas from different fields in economics and broad scientific research. For example, in the first part of this thesis we sought a fruitful application of strong existence results in utility theory to topics in asset pricing. In the second part we implement an idea from the field of fuzzy set theory to the optimal portfolio selection problem, while the third part of this thesis is to the best of our knowledge, the first empirical application of some general results in asset pricing in incomplete markets to the important topic of measurement of financial integration. While the first two parts of this thesis effectively combine well-known ways to quantify the risk-reward trade-offs the third one can be viewed as an empirical verification of the usefulness of the so-called "good deal bounds" theory in designing risk-sensitive pricing bounds. Chapter 1 develops a discrete-time asset pricing model, based on a novel ordinally equivalent representation of recursive utility. To the best of our knowledge, we are the first to use a member of a novel class of recursive utility generators to construct a representative agent model to address some long-lasting issues in asset pricing. Applying strong representation results allows us to show that the model features countercyclical risk premia, for both consumption and financial risk, together with low and procyclical risk free rate. As the recursive utility used nests as a special case the well-known time-state separable utility, all results nest the corresponding ones from the standard model and thus shed light on its well-known shortcomings. The empirical investigation to support these theoretical results, however, showed that as long as one resorts to econometric methods based on approximating conditional moments with unconditional ones, it is not possible to distinguish the model we propose from the standard one. Chapter 2 is a join work with Sergei Sontchik. There we provide theoretical and empirical motivation for aggregation of performance measures. The main idea is that as it makes sense to apply several performance measures ex-post, it also makes sense to base optimal portfolio selection on ex-ante maximization of as many possible performance measures as desired. We thus offer a concrete algorithm for optimal portfolio selection via ex-ante optimization over different horizons of several risk-return trade-offs simultaneously. An empirical application of that algorithm, using seven popular performance measures, suggests that realized returns feature better distributional characteristics relative to those of realized returns from portfolio strategies optimal with respect to single performance measures. When comparing the distributions of realized returns we used two partial risk-reward orderings first and second order stochastic dominance. We first used the Kolmogorov Smirnov test to determine if the two distributions are indeed different, which combined with a visual inspection allowed us to demonstrate that the way we propose to aggregate performance measures leads to portfolio realized returns that first order stochastically dominate the ones that result from optimization only with respect to, for example, Treynor ratio and Jensen's alpha. We checked for second order stochastic dominance via point wise comparison of the so-called absolute Lorenz curve, or the sequence of expected shortfalls for a range of quantiles. As soon as the plot of the absolute Lorenz curve for the aggregated performance measures was above the one corresponding to each individual measure, we were tempted to conclude that the algorithm we propose leads to portfolio returns distribution that second order stochastically dominates virtually all performance measures considered. Chapter 3 proposes a measure of financial integration, based on recent advances in asset pricing in incomplete markets. Given a base market (a set of traded assets) and an index of another market, we propose to measure financial integration through time by the size of the spread between the pricing bounds of the market index, relative to the base market. The bigger the spread around country index A, viewed from market B, the less integrated markets A and B are. We investigate the presence of structural breaks in the size of the spread for EMU member country indices before and after the introduction of the Euro. We find evidence that both the level and the volatility of our financial integration measure increased after the introduction of the Euro. That counterintuitive result suggests the presence of an inherent weakness in the attempt to measure financial integration independently of economic fundamentals. Nevertheless, the results about the bounds on the risk free rate appear plausible from the view point of existing economic theory about the impact of integration on interest rates.