881 resultados para Optically pumped


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present novel Terahertz (THz) emitting optically pumped Quantum Dot (QD) photoconductive (PC) materials and antenna structures on their basis both for pulsed and CW pumping regimes. Full text Quantum dot and microantenna design - Presented here are design considerations for the semiconductor materials in our novel QD-based photoconductive antenna (PCA) structures, metallic microantenna designs, and their implementation as part of a complete THz source or transceiver system. Layers of implanted QDs can be used for the photocarrier lifetime shortening mechanism[1,2]. In our research we use InAs:GaAs QD structures of varying dot layer number and distributed Bragg reflector(DBR)reflectivity range. According to the observed dependence of carrier lifetimes on QD layer periodicity [3], it is reasonable to assume that electron lifetimes can be potentially reduced down to 0.45ps in such structures. Both of these features; long excitation wavelength and short carriers lifetime predict possible feasibility of QD antennas for THz generation and detection. In general, relatively simple antenna configurations were used here, including: coplanar stripline (CPS); Hertzian-type dipoles; bow-ties for broadband and log-spiral(LS)or log-periodic(LP)‘toothed’ geometriesfor a CW operation regime. Experimental results - Several lasers are used for antenna pumping: Ti:Sapphire femtosecond laser, as well as single-[4], double-[5] wavelength, and pulsed [6] QD lasers. For detection of the THz signal different schemes and devices were used, e.g. helium-cooled bolometer, Golay cell and a second PCA for coherent THz detection in a traditional time-domain measurement scheme.Fig.1shows the typical THz output power trend from a 5 um-gap LPQD PCA pumped using a tunable QD LD with optical pump spectrum shown in (b). Summary - QD-based THz systems have been demonstrated as a feasible and highly versatile solution. The implementation of QD LDs as pump sources could be a major step towards ultra-compact, electrically controllable transceiver system that would increase the scope of data analysis due to the high pulse repetition rates of such LDs [3], allowing real-time THz TDS and data acquisition. Future steps in development of such systems now lie in the further investigation of QD-based THz PCA structures and devices, particularly with regards to their compatibilitywith QD LDs as pump sources. [1]E. U. Rafailov et al., “Fast quantum-dot saturable absorber for passive mode-locking of solid-State lasers,”Photon.Tech.Lett., IEEE, vol. 16 pp. 2439-2441(2004) [2]E. Estacio, “Strong enhancement of terahertz emission from GaAs in InAs/GaAs quantum dot structures. Appl.Phys.Lett., vol. 94 pp. 232104 (2009) [3]C. Kadow et al., “Self-assembled ErAs islands in GaAs: Growth and subpicosecond carrier dynamics,” Appl. Phys. Lett., vol. 75 pp. 3548-3550 (1999) [4]T. Kruczek, R. Leyman, D. Carnegie, N. Bazieva, G. Erbert, S. Schulz, C. Reardon, and E. U. Rafailov, “Continuous wave terahertz radiation from an InAs/GaAs quantum-dot photomixer device,” Appl. Phys. Lett., vol. 101(2012) [5]R. Leyman, D. I. Nikitichev, N. Bazieva, and E. U. Rafailov, “Multimodal spectral control of a quantum-dot diode laser for THz difference frequency generation,” Appl. Phys. Lett., vol. 99 (2011) [6]K.G. Wilcox, M. Butkus, I. Farrer, D.A. Ritchie, A. Tropper, E.U. Rafailov, “Subpicosecond quantum dot saturable absorber mode-locked semiconductor disk laser, ” Appl. Phys. Lett. Vol 94, 2511 © 2014 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Unrepeatered 100 Gbit/s per channel wave-divisionmultiplexed dual-polarization-QPSK transmission with random distributed feedback fiber laser-based Raman amplification using fiber Bragg grating is demonstrated. Transmission of 1.4 Tb/s (14 × 100 Gbit/s) was possible in 352.8 km link and 2.2 Tb/s (22 × 100 Gbit/s) was achieved in 327.6 km without employing remote optically pumped amplifier or speciality fibers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper will review the recent advances in the field of ultrashort pulse generation from optically pumped vertical-external-cavity surface-emitting lasers (OP-VECSELs). In this review, we will summarize the most significant results presented over the last 15 years, before highlighting recent breakthroughs related to mode-locked VECSELs by different research groups. Different mode-locking techniques for OP-VECSELs are described in detail. Previously, saturable absorbers, such as semiconductor saturable absorber mirrors—external, or internal as in mode-locked integrated external-cavity surface emitting lasers (MIXSEL)—, and recently, novel-material-based carbon-nanotube and graphene saturable absorbers have been employed. A new mode-locking method was presented and discussed in recent years. This method is referred to as self-mode-locking or saturable-absorber-free operation of mode-locked VECSELs. In this context, we particularly focus on achievements regarding self-mode-locking, which is considered a promising technique for the realization of high-power, compact, robust and cost-efficient ultrashort pulse lasers. To date, the presented mode-locking techniques have led to great enhancement in average powers, peak powers, and repetition rates that can be achieved with passively mode-locked VECSELs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We demonstrate optically tunable dispersion compensators based on pumping fiber Bragg gratings made in Er/Yb codoped fiber. The tunable dispersion for a chirped grating and also a uniform-period grating was successfully demonstrated in the experiment. The dispersion of the chirped grating was tuned from 900 to 1990 ps/nm and also from -600 to -950 ps/nm in the experiment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We demonstrate optically tunable dispersion compensators based on pumping fiber Bragg gratings made in Er/Yb codoped fiber. The tunable dispersion for a chirped grating and also a uniform-period grating was successfully demonstrated in the experiment. The dispersion of the chirped grating was tuned from 900 to 1990 ps/nm and also from -600 to -950 ps/nm in the experiment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The THz optoelectronics field is now maturing and semiconductor-based THz antenna devices are becoming more widely implemented as analytical tools in spectroscopy and imaging. Photoconductive (PC) THz switches/antennas are driven optically typically using either an ultrashort-pulse laser or an optical signal composed of two simultaneous longitudinal wavelengths which are beat together in the PC material at a THz difference frequency. This allows the generation of (photo)carrier pairs which are then captured over ultrashort timescales usually by defects and trapping sites throughout the active material lattice. Defect-implanted PC materials with relatively high bandgap energy are typically used and many parameters such as carrier mobility and PC gain are greatly compromised. This paper demonstrates the implementation of low bandgap energy InAs quantum dots (QDs) embedded in standard crystalline GaAs as both the PC medium and the ultrafast capture mechanism in a PC THz antenna. This semiconductor structure is grown using standard MBE methods and allows the device to be optically driven efficiently at wavelengths up to ~1.3 µm, in this case by a single tunable dual-mode QD diode laser.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a new tuning method for chromatic dispersion compensators, which can be optically tunable. The dispersion compensators were made in Er/Yb co-doped fiber and were pumped with 980nm laser diodes. The tunable dispersion for a chirped grating and also a uniform-period grating was successfully demonstrated in the experiment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a new design methodology for discrete multi-pumped Raman amplifier. In a multi-objective optimization scenario, in a first step the whole solution-space is inspected by a CW analytical formulation. Then, the most promising solutions are fully investigated by a rigorous numerical treatment and the Raman amplification performance is thus determined by the combination of analytical and numerical approaches. As an application of our methodology we designed an photonic crystal fiber Raman amplifier configuration which provides low ripple, high gain, clear eye opening and a low power penalty. The amplifier configuration also enables to fully compensate the dispersion introduced by a 70-km singlemode fiber in a 10 Gbit/s system. We have successfully obtained a configuration with 8.5 dB average gain over the C-band and 0.71 dB ripple with almost zero eye-penalty using only two pump lasers with relatively low pump power. (C) 2009 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microfabrication via two-photon absorption polymerization is a technique to design complex microstructures in a simple and fast way. The applications of such structures range from mechanics to photonics to biology, depending on the dopant material and its specific properties. In this paper, we use two-photon absorption polymerization to fabricate optically active microstructures containing the conductive and luminescent polymer poly(2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV). We verify that MEH-PPV retains its optical activity and is distributed throughout the microstructure after fabrication. The microstructures retain the emission characteristics of MEH-PPV and allow waveguiding of locally excited fluorescence when fabricated on top of low refractive index substrates. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3232207]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of this work is to study and relate electrical and optical properties of diamond-like carbon (DLC) thin films for applications in electronic devices. DLC films were deposited in a reactive RF magnetron sputtering system on p-type silicon and glass substrates. The target was a 99.9999% pure, 6 in. diameter graphite plate and methane was used as processing gas. Eight DLC films were produced for each substrate, varying deposition time, the reactor pressure between 5 mTorr and 10 mTorr while the RF power was applied at 13.56 MHz and varied between 100, 150, 200 and 250W. After deposition, the films were analyzed by I-V and C-V measurements (Cheng et al. (2004) [1]) in order to determine the electric resistivity, photo-current response and dielectric constant, optical transmittance, used to find the optical gap by the Tauc method; and by photoluminescence analysis to determine the photoemission and confirm the optical band gap. These characteristics are compared and the influence of the deposition parameters is discussed. (C) 2011 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have found photoinduced second harmonic generation at wavelength 1064 nm during bicolor Nd:YAG laser coherent treatment of TeO(2)-ZnO and GeO(2)-PbO amorphous films. The maximally achieved second order susceptibility was equal to about 1.02 pm/V. Correlation of the induced second order susceptibility with local sample heating and induced birefringence may indicate an occurrence of local phase transitions from amorphous glass-like phase to non-centrosymmetry metastable phases. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a controlled stress microviscometer with applications to complex fluids. It generates and measures microscopic fluid velocity fields, based on dual beam optical tweezers. This allows an investigation of bulk viscous properties and local inhomogeneities at the probe particle surface. The accuracy of the method is demonstrated in water. In a complex fluid model (hyaluronic acid), we observe a strong deviation of the flow field from classical behavior. Knowledge of the deviation together with an optical torque measurement is used to determine the bulk viscosity. Furthermore, we model the observed deviation and derive microscopic parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comparative study of the high energy radiation resistance to formation of radicals in two pairs of polymers is reported. In one pair of polymers the phenyl groups containing the imide rings are separated by an ether linkage and in the other pair they are separated by an hexafluoroisopropylidine group. Two of the polymers contained aromatic amine units linked through an ether linkage and the other two polymers contained a trifluoromethyl biphenyl diamine. The polymers were shown to retain a high level of transparency in the visible region following radiolysis to doses as high as 8 Gy. ESR studies of the resistance to radical formation on radiolysis. at 77 K revealed that the polymers containing ether linkages were more stable than their fluorinated analogues, but all were less stable than Kapton (R). (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on a proof of principle demonstration of an optically driven micromachine element. Optical angular momentum is transferred from a circularly polarized laser beam to a birefringent particle confined in an optical tweezers trap. The optical torque causes the particle to spin at up to 350 Hz, and this torque is harnessed to drive an optically trapped microfabricated structure. We describe a photolithographic method for producing the microstructures and show how a light driven motor could be used in a micromachine system. (C) 2001 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to generate enormous random libraries of DNA probes via split-and-mix synthesis on solid supports is an important biotechnological application of colloids that has not been fully utilized to date. To discriminate between colloid-based DNA probes each colloidal particle must be 'encoded' so it is distinguishable from all other particles. To this end, we have used novel particle synthesis strategies to produce large numbers of optically encoded particle suitable for DNA library synthesis. Multifluorescent particles with unique and reproducible optical signatures (i.e., fluorescence and light-scattering attributes) suitable for high-throughput flow cytometry have been produced. In the spectroscopic study presented here, we investigated the optical characteristics of multi-fluorescent particles that were synthesized by coating silica 'core' particles with up to six different fluorescent dye shells alternated with non-fluorescent silica 'spacer' shells. It was observed that the diameter of the particles increased by up to 20% as a result of the addition of twelve concentric shells and that there was a significant reduction in fluorescence emission intensities from inner shells as an increasing number of shells were deposited.