979 resultados para Optical fields


Relevância:

40.00% 40.00%

Publicador:

Resumo:

PURPOSE Precise temperature measurements in the magnetic field are indispensable for MR safety studies and for temperature calibration during MR-guided thermotherapy. In this work, the interference of two commonly used fiber-optical temperature measurement systems with the static magnetic field B0 was determined. METHODS Two fiber-optical temperature measurement systems, a GaAs-semiconductor and a phosphorescent phosphor ceramic, were compared for temperature measurements in B0 . The probes and a glass thermometer for reference were placed in an MR-compatible tube phantom within a water bath. Temperature measurements were carried out at three different MR systems covering static magnetic fields up to B0  = 9.4T, and water temperatures were changed between 25°C and 65°C. RESULTS The GaAs-probe significantly underestimated absolute temperatures by an amount related to the square of B0 . A maximum difference of ΔT = -4.6°C was seen at 9.4T. No systematic temperature difference was found with the phosphor ceramic probe. For both systems, the measurements were not dependent on the orientation of the sensor to B0 . CONCLUSION Temperature measurements with the phosphor ceramic probe are immune to magnetic fields up to 9.4T, whereas the GaAs-probes either require a recalibration inside the MR system or a correction based on the square of B0 . Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The optical behaviour of cholesteric mixtures of negative dielectric anisotrony under electric fields is reported. A mixture of S 311~ (31.35 %) + N 5 was employed. AC voltages (f = 1000 Hz) betweeen 0 and 150 volts were applied. Cells 23 micron thick, with internal SnO2 electrodes, were used.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Optical Bloch equations are widely used for describing dynamics in a system consisting molecules, electromagnetic waves, and a thermal bath. We analyze applicability of these equations to a single molecule imbedded in a solid matrix. Classical Bloch equations and the limits of their applicability are derived from more general master equations. Simple and intuitively appealing picture based on stochastic Bloch equations shows that at low temperatures, contrary to common believes, a strong driving field can not only suppress but can also increase decay rates of Rabi oscillations. A physical system where predicted effects can be observed experimentally is suggested. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present a novel device for the characterisation of static magnetic fields through monitoring wavelength shifts of femtosecond inscribed fibre Bragg grating and micromachined slot, coated with Terfenol-D. The device was sensitive to static magnetic fields and can be used as a vectoral sensor for the detection of magnetic fields as low as 0.046 mT with a resolution of ± 0.3mT in transmission and ± 0.7mT in reflection. The use of a femtosecond laser to both inscribe the FBGs and micromachine the slot in a single stage prior to coating the device significantly simplifies the fabrication.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A novel device for the detection and characterisation of static magnetic fields is presented. It consists of a femtosecond laser inscribed fibre Bragg grating (FBG) that is incorporated into an optical fibre with a femtosecond laser micromachined slot. The symmetry of the fibre is broken by the micro-slot, producing non-uniform strain across the fibre cross section. The sensing region is coated with Terfenol-D making the device sensitive to static magnetic fields, whereas the symmetry breaking results in a vectorial sensor for the detection of magnetic fields as low as 0.046 mT with a resolution of ±0.3mT in transmission and ±0.7mT in reflection. The sensor output is directly wavelength encoded from the FBG filtering, leading to simple demodulation through the monitoring of wavelength shifts that result as the fibre structure changes shape in response to the external magnetic field. The use of a femtosecond laser to both inscribe the FBG and micro-machine the slot in a single stage, prior to coating the device, significantly simplifies the sensor fabrication.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A novel device for the detection and characterisation of static magnetic fields is presented. It consists of a femtosecond laser inscribed fibre Bragg grating (FBG) that is incorporated into an optical fibre with a femtosecond laser micromachined slot. The symmetry of the fibre is broken by the micro-slot, producing non-uniform strain across the fibre cross section. The sensing region is coated with Terfenol-D making the device sensitive to static magnetic fields, whereas the symmetry breaking results in a vectorial sensor for the detection of magnetic fields as low as 0.046 mT with a resolution of ±0.3mT in transmission and ±0.7mT in reflection. The sensor output is directly wavelength encoded from the FBG filtering, leading to simple demodulation through the monitoring of wavelength shifts that result as the fibre structure changes shape in response to the external magnetic field. The use of a femtosecond laser to both inscribe the FBG and micro-machine the slot in a single stage, prior to coating the device, significantly simplifies the sensor fabrication.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many optical networks are limited in speed and processing capability due to the necessity for the optical signal to be converted to an electrical signal and back again. In addition, electronically manipulated interconnects in an otherwise optical network lead to overly complicated systems. Optical spatial solitons are optical beams that propagate without spatial divergence. They are capable of phase dependent interactions, and have therefore been extensively researched as suitable all optical interconnects for over 20 years. However, they require additional external components, initially high voltage power sources were required, several years later, high power background illumination had replaced the high voltage. However, these additional components have always remained as the greatest hurdle in realising the applications of the interactions of spatial optical solitons as all optical interconnects. Recently however, self-focusing was observed in an otherwise self-defocusing photorefractive crystal. This observation raises the possibility of the formation of soliton-like fields in unbiased self-defocusing media, without the need for an applied electrical field or background illumination. This thesis will present an examination of the possibility of the formation of soliton-like low divergence fields in unbiased self-defocusing photorefractive media. The optimal incident beam and photorefractive media parameters for the formation of these fields will be presented, together with an analytical and numerical study of the effect of these parameters. In addition, preliminary examination of the interactions of two of these fields will be presented. In order to complete an analytical examination of the field propagating through the photorefractive medium, the spatial profile of the beam after propagation through the medium was determined. For a low power solution, it was found that an incident Gaussian field maintains its Gaussian profile as it propagates. This allowed the beam at all times to be described by an individual complex beam parameter, while also allowing simple analytical solutions to the appropriate wave equation. An analytical model was developed to describe the effect of the photorefractive medium on the Gaussian beam. Using this model, expressions for the required intensity dependent change in both the real and imaginary components of the refractive index were found. Numerical investigation showed that under certain conditions, a low powered Gaussian field could propagate in self-defocusing photorefractive media with divergence of approximately 0.1 % per metre. An investigation into the parameters of a Ce:BaTiO3 crystal showed that the intensity dependent absorption is wavelength dependent, and can in fact transition to intensity dependent transparency. Thus, with careful wavelength selection, the required intensity dependent change in both the real and imaginary components of the refractive index for the formation of a low divergence Gaussian field are physically realisable. A theoretical model incorporating the dependence of the change in real and imaginary components of the refractive index on propagation distance was developed. Analytical and numerical results from this model are congruent with the results from the previous model, showing low divergence fields with divergence less than 0.003 % over the propagation length of the photorefractive medium. In addition, this approach also confirmed the previously mentioned self-focusing effect of the self-defocusing media, and provided an analogy to a negative index GRIN lens with an intensity dependent focal length. Experimental results supported the findings of the numerical analysis. Two low divergence fields were found to possess the ability to interact in a Ce:BaTiO3 crystal in a soliton-like fashion. The strength of these interactions was found to be dependent on the degree of divergence of the individual beams. This research found that low-divergence fields are possible in unbiased self-defocusing photorefractive media, and that soliton-like interactions between two of these fields are possible. However, in order for these types of fields to be used in future all optical interconnects, the manipulation of these interactions, together with the ability for these fields to guide a second beam at a different wavelength, must be investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Strong electromagnetic field enhancement that occurs under conditions of the surface plasmon excitation in metallic nanoparticles deposited on a semiconductor surface is a very efficient and promising tool for increasing the optical absorption within semiconductor solar cells and, hence, their photocurrent response. The enhancement of the optical absorption in thin-film silicon solar cells via the excitation of localized surface plasmons in spherical silver nanoparticles is investigated. Using the effective medium model, the effect of the nanoparticle size and the surface coverage on that enhancement is analyzed. The optimum configuration and the nanoparticle parameters leading to the maximum enhancement in the optical absorption and the photocurrent response in a single p-n junction silicon cell are obtained. The effect of coupling between the silicon layer and the surface plasmon fields on the efficiency of the above enhancement is quantified as well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Radial and axial distributions of magnetic fields in a low-frequency (∼460 kHz)inductively coupled plasmasource with two internal crossed planar rf current sheets are reported. The internal antenna configuration comprises two orthogonal sets of eight alternately reconnected parallel and equidistant copper litz wires in quartz enclosures and generates three magnetic (H z, H r, and H φ) and two electric (E φ and E r) field components at the fundamental frequency. The measurements have been performed in rarefied and dense plasmas generated in the electrostatic(E) and electromagnetic (H)discharge modes using two miniature magnetic probes. It is shown that the radial uniformity and depth of the rf power deposition can be improved as compared with conventional sources of inductively coupled plasmas with external flat spiral (“pancake”) antennas. Relatively deeper rf power deposition in the plasma source results in more uniform profiles of the optical emission intensity, which indicates on the improvement of the plasma uniformity over large chamber volumes. The results of the numerical modeling of the radial magnetic field profiles are found in a reasonable agreement with the experimental data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show that the parallax motion resulting from non-nodal rotation in panorama capture can be exploited for light field construction from commodity hardware. Automated panoramic image capture typically seeks to rotate a camera exactly about its nodal point, for which no parallax motion is observed. This can be difficult or impossible to achieve due to limitations of the mounting or optical systems, and consequently a wide range of captured panoramas suffer from parallax between images. We show that by capturing such imagery over a regular grid of camera poses, then appropriately transforming the captured imagery to a common parameterisation, a light field can be constructed. The resulting four-dimensional image encodes scene geometry as well as texture, allowing an increasingly rich range of light field processing techniques to be applied. Employing an Ocular Robotics REV25 camera pointing system, we demonstrate light field capture,refocusing and low-light image enhancement.