934 resultados para Optical fibres -- Industrial Applications


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tests on printed circuit boards and integrated circuits are widely used in industry,resulting in reduced design time and cost of a project. The functional and connectivity tests in this type of circuits soon began to be a concern for the manufacturers, leading to research for solutions that would allow a reliable, quick, cheap and universal solution. Initially, using test schemes were based on a set of needles that was connected to inputs and outputs of the integrated circuit board (bed-of-nails), to which signals were applied, in order to verify whether the circuit was according to the specifications and could be assembled in the production line. With the development of projects, circuit miniaturization, improvement of the production processes, improvement of the materials used, as well as the increase in the number of circuits, it was necessary to search for another solution. Thus Boundary-Scan Testing was developed which operates on the border of integrated circuits and allows testing the connectivity of the input and the output ports of a circuit. The Boundary-Scan Testing method was converted into a standard, in 1990, by the IEEE organization, being known as the IEEE 1149.1 Standard. Since then a large number of manufacturers have adopted this standard in their products. This master thesis has, as main objective: the design of Boundary-Scan Testing in an image sensor in CMOS technology, analyzing the standard requirements, the process used in the prototype production, developing the design and layout of Boundary-Scan and analyzing obtained results after production. Chapter 1 presents briefly the evolution of testing procedures used in industry, developments and applications of image sensors and the motivation for the use of architecture Boundary-Scan Testing. Chapter 2 explores the fundamentals of Boundary-Scan Testing and image sensors, starting with the Boundary-Scan architecture defined in the Standard, where functional blocks are analyzed. This understanding is necessary to implement the design on an image sensor. It also explains the architecture of image sensors currently used, focusing on sensors with a large number of inputs and outputs.Chapter 3 describes the design of the Boundary-Scan implemented and starts to analyse the design and functions of the prototype, the used software, the designs and simulations of the functional blocks of the Boundary-Scan implemented. Chapter 4 presents the layout process used based on the design developed on chapter 3, describing the software used for this purpose, the planning of the layout location (floorplan) and its dimensions, the layout of individual blocks, checks in terms of layout rules, the comparison with the final design and finally the simulation. Chapter 5 describes how the functional tests were performed to verify the design compliancy with the specifications of Standard IEEE 1149.1. These tests were focused on the application of signals to input and output ports of the produced prototype. Chapter 6 presents the conclusions that were taken throughout the execution of the work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work is to study the replacement of currently used thermoplastics by composites reinforced with vegetable fibers with several advantages, mainly better mechanical properties, low weight and competitive cost compared to its counterparts. Extrusion and injection molding processes were studied using polypropylene (PP) matrix. The raw materials used were sugar cane bagasse, elephant grass, wood, milk cartons and recycled polypropylene. The composites were tested for bending, tension, hardness and impact resistance, following ASTM standards. The results obtained were extremely positive since they proved that natural fibers as reinforcement can be an important alternative to replace talc and other fillers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Xylan is the principal type of hemicellulose. It is a linear polymer of beta-D-xylopyranosyl units linked by (1-4) glycosidic bonds. In nature, the polysaccharide backbone may be added to 4-O-methyl-alpha-D-glucuronopyranosyl units, acetyl groups, alpha-L-arabinofuranosyl, etc., in variable proportions. An enzymatic complex is responsible for the hydrolysis of xylan, but the main enzymes involved are endo-1,4-beta-xylanase and beta-xylosidase. These enzymes are produced by fungi, bacteria, yeast, marine algae, protozoans, snails, crustaceans, insect, seeds, etc., but the principal commercial source is filamentous fungi. Recently, there has been much industrial interest in xylan and its hydrolytic enzymatic complex, as a supplement in animal feed, for the manufacture of bread, food and drinks, textiles, bleaching of cellulose pulp, ethanol and xylitol production. This review describes some properties of xylan and its metabolism, as well as the biochemical properties of xylanases and their commercial applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Networked control systems (NCSs) are distributed control system in which sensors, actuators and controllers are physically separated and connected through communication networks. NCS represent the evolution of networked control architectures providing greater modularity and control decentralization, ease maintenance and diagnosis and lower cost of implementation. A recent trend in this research topic is the development of NCS using wireless networks(WNCS)which enable interoperability between existing wiredand wireless systems. This paper presents the feasibility analysis of using serial to wireless converter as a wireless sensor link in NCS. In order to support this investigation, relevant performance metrics for wireless control applications such as jitter, time delay and messages lost are highlighted and calculated to evaluate the wireless converter capabilities. In addition the control performance of an implemented motor control system using the converter is analyzed. Experimental results led to the conclusion that serial ZigBee device isrecommended against the Bluetooth as it provided better metrics for control applications. However, bothdevices can be used to implement WNCS providing transmission rates and closed control loop times which are acceptable for NCS applications.Moreoverthe use of thewireless device delay in the PID controller discretization can improve the control performance of the system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main problem connected to cone beam computed tomography (CT) systems for industrial applications employing 450 kV X-ray tubes is the high amount of scattered radiation which is added to the primary radiation (signal). This stray radiation leads to a significant degradation of the image quality. A better understanding of the scattering and methods to reduce its effects are therefore necessary to improve the image quality. Several studies have been carried out in the medical field at lower energies, whereas studies in industrial CT, especially for energies up to 450 kV, are lacking. Moreover, the studies reported in literature do not consider the scattered radiation generated by the CT system structure and the walls of the X-ray room (environmental scatter). In order to investigate the scattering on CT projections a GEANT4-based Monte Carlo (MC) model was developed. The model, which has been validated against experimental data, has enabled the calculation of the scattering including the environmental scatter, the optimization of an anti-scatter grid suitable for the CT system, and the optimization of the hardware components of the CT system. The investigation of multiple scattering in the CT projections showed that its contribution is 2.3 times the one of primary radiation for certain objects. The results of the environmental scatter showed that it is the major component of the scattering for aluminum box objects of front size 70 x 70 mm2 and that it strongly depends on the thickness of the object and therefore on the projection. For that reason, its correction is one of the key factors for achieving high quality images. The anti-scatter grid optimized by means of the developed MC model was found to reduce the scatter-toprimary ratio in the reconstructed images by 20 %. The object and environmental scatter calculated by means of the simulation were used to improve the scatter correction algorithm which could be patented by Empa. The results showed that the cupping effect in the corrected image is strongly reduced. The developed CT simulation is a powerful tool to optimize the design of the CT system and to evaluate the contribution of the scattered radiation to the image. Besides, it has offered a basis for a new scatter correction approach by which it has been possible to achieve images with the same spatial resolution as state-of-the-art well collimated fan-beam CT with a gain in the reconstruction time of a factor 10. This result has a high economic impact in non-destructive testing and evaluation, and reverse engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, metal nanoparticles produced by nanosphere lithography were studied in terms of their optical properties (in connection to their plasmon resonances), their potential application in sensing platforms - for thin layer sensing and bio-recognition events -, and for a particular case (the nanocrescents), for enhanced spectroscopy studies. The general preparation procedures introduced early in 2005 by Shumaker-Parry et al. to produce metallic nanocrescents were extended to give rise to more complex (isolated) structures, and also, by combining colloidal monolayer fabrication and plasma etching techniques, to arrays of them. The fabrication methods presented in this work were extended not only to new shapes or arrangements of particles, but included also a targeted surface tailoring of the substrates and the structures, using different thiol and silane compounds as linkers for further attachment of, i.e. polyelectrolyte layers, which allow for a controlled tailoring of their nanoenvironment. The optical properties of the nanocrescents were studied with conventional transmission spectroscopy; a simple multipole model was adapted to explain their behaviour qualitatively. In terms of applications, the results on thin film sensing using these particles show that the crescents present an interesting mode-dependent sensitivity and spatial extension. Parallel to this, the penetrations depths were modeled with two simplified schemes, obtaining good agreement with theory. The multiple modes of the particles with their characteristic decay lengths and sensitivities represent a major improvement for particle-sensing platforms compared to previous single resonance systems. The nanocrescents were also used to alter the emission properties of fluorophores placed close to them. In this work, green emitting dyes were placed at controlled distances from the structures and excited using a pulsed laser emitting in the near infrared. The fluorescence signal obtained in this manner should be connected to a two-photon processes triggered by these structures; obtaining first insight into plasmon-mediated enhancement phenomena. An even simpler and faster approach to produce plasmonic structures than that for the crescents was tested. Metallic nanodiscs and nanoellipses were produced by means of nanosphere lithography, extending a procedure reported in the literature to new shapes and optical properties. The optical properties of these particles were characterized by extinction spectroscopy and compared to results from the literature. Their major advantage is that they present a polarization-dependent response, like the nanocrescents, but are much simpler to fabricate, and the resonances can be tailored in the visible with relative ease. The sensing capabilities of the metallic nanodiscs were explored in the same manner as for the nanocrescents, meaning their response to thin layers and to bio-recognition events on their surface. The sensitivity of these nanostructures to thin films proved to be lower than that of the crescents, though in the same order of magnitude. Experimental information about the near field extension for the Au nanodiscs of different sizes was also extracted from these measurements. Further resonance-tailoring approaches based on electrochemical deposition of metals on the nanodiscs were explored, as a means of modifying plasmon resonances by changing surface properties of the nanoparticles. First results on these experiments would indicate that the deposition of Ag on Au on a submonolayer coverage level can lead to important blue-shifts in the resonances, which would open a simple way to tailor resonances by changing material properties in a local manner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El presente trabajo trata de elementos reforzados con barras de armadura y Fibras Metálicas Recicladas (FMR). El objetivo principal es mejorar el comportamiento a fisuración de elementos sometidos a flexión pura y a flexión compuesta, aumentando en consecuencia las prestaciones en servicio de aquellas estructuras con requerimientos estrictos con respecto al control de fisuración. Entre éstas últimas se encuentran las estructuras integrales, es decir aquellas estructuras sin juntas (puentes o edificios), sometidas a cargas gravitatorias y deformaciones impuestas en los elementos horizontales debidas a retracción, fluencia y temperatura. Las FMR son obtenidas a partir de los neumáticos fuera de uso, y puesto que el procedimiento de reciclado se centra en el caucho en vez que en el acero, su forma es aleatoria y con longitud variable. A pesar de que la eficacia del fibrorefuerzo mediante FMR ha sido demostrada en investigaciones anteriores, la innovación que representa este trabajo consiste en proponer la acción combinada de barras convencionales y FMR en la mejora del comportamiento a fisuración. El objetivo es por tanto mejorar la sostenibilidad del proyecto de la estructura en HA al utilizar materiales reciclados por un lado, y aumentando por el otro la durabilidad. En primer lugar, se presenta el estado del arte con respecto a la fisuración en elementos de HA, que sucesivamente se amplía a elementos reforzados con barras y fibras. Asimismo, se resume el método simplificado para el análisis de columnas de estructuras sin juntas ya propuesto por Pérez et al., con particular énfasis en aquellos aspectos que son incompatibles con la acción de las fibras a nivel seccional. A continuación, se presenta un modelo para describir la deformabilidad seccional y la fisuración en elementos en HA, que luego se amplía a aquellos elementos reforzados con barras y fibras, teniendo en cuenta también los efectos debidos a la retracción (tension stiffening negativo). El modelo es luego empleado para ampliar el método simplificado para el análisis de columnas. La aportación consiste por tanto en contar con una metodología amplia de análisis para este tipo de elementos. Seguidamente, se presenta la campaña experimental preliminar que ha involucrado vigas a escala reducida sometidas a flexión simple, con el objetivo de validar la eficiencia y la usabilidad en el hormigón de las FMR de dos diferentes tipos, y su comportamiento con respecto a fibras de acero comerciales. Se describe a continuación la campaña principal, consistente en ensayos sobre ocho vigas en flexión simple a escala 1:1 (variando contenido en FRM, Ø/s,eff y recubrimiento) y doce columnas a flexión compuesta (variando contenido en FMR, Ø/s,eff y nivel de fuerza axil). Los resultados obtenidos en la campaña principal son presentados y comentados, resaltando las mejoras obtenidas en el comportamiento a fisuración de las vigas y columnas, y la rigidez estructural de las columnas. Estos resultados se comparan con las predicciones del modelo propuesto. Los principales parámetros estudiados para describir la fisuración y el comportamiento seccional de las vigas son: la separación entre fisuras, el alargamiento medio de las armaduras y la abertura de fisura, mientras que en los ensayos de las columnas se ha contrastado las leyes momento/curvatura, la tensión en las barras de armadura y la abertura de fisura en el empotramiento en la base. La comparación muestra un buen acuerdo entre las predicciones y los resultados experimentales. Asimismo, se nota la mejora en el comportamiento a fisuración debido a la incorporación de FMR en aquellos elementos con cuantías de armadura bajas en flexión simple, en elementos con axiles bajos y para el control de la fisuración en elementos con grandes recubrimientos, siendo por tanto resultados de inmediato impacto en la práctica ingenieril (diseño de losas, tanques, estructuras integrales, etc.). VIIIComo punto final, se presentan aplicaciones de las FMR en estructuras reales. Se discuten dos casos de elementos sometidos a flexión pura, en particular una viga simplemente apoyada y un tanque para el tratamiento de agua. En ambos casos la adicción de FMR al hormigón lleva a mejoras en el comportamiento a fisuración. Luego, utilizando el método simplificado para el análisis en servicio de columnas de estructuras sin juntas, se calcula la máxima longitud admisible en casos típicos de puentes y edificación. En particular, se demuestra que las limitaciones de la práctica ingenieril actual (sobre todo en edificación) pueden ser aumentadas considerando el comportamiento real de las columnas en HA. Finalmente, los mismos casos son modificados para considerar el uso de MFR, y se presentan las mejoras tanto en la máxima longitud admisible como en la abertura de fisura para una longitud y deformación impuesta. This work deals with elements reinforced with both rebars and Recycled Steel Fibres (RSFs). Its main objective is to improve cracking behaviour of elements subjected to pure bending and bending and axial force, resulting in better serviceability conditions for these structures demanding keen crack width control. Among these structures a particularly interesting type are the so-called integral structures, i.e. long jointless structures (bridges and buildings) subjected to gravitational loads and imposed deformations due to shrinkage, creep and temperature. RSFs are obtained from End of Life Tyres, and due to the recycling process that is focused on the rubber rather than on the steel they come out crooked and with variable length. Although the effectiveness of RSFs had already been proven by previous research, the innovation of this work consists in the proposing the combined action of conventional rebars and RSFs to improve cracking behaviour. Therefore, the objective is to improve the sustainability of RC structures by, on the one hand, using recycled materials, and on the other improving their durability. A state of the art on cracking in RC elements is firstly drawn. It is then expanded to elements reinforced with both rebars and fibres (R/FRC elements). Finally, the simplified method for analysis of columns of long jointless structures already proposed by Pérez et al. is resumed, with a special focus on the points that conflict when taking into account the action of fibres. Afterwards, a model to describe sectional deformability and cracking of R/FRC elements is presented, taking also into account the effect of shrinkage (negative tension stiffening). The model is then used to implement the simplified method for columns. The novelty represented by this is that a comprehensive methodology to analyse this type of elements is presented. A preliminary experimental campaign consisting in small beams subjected to pure bending is described, with the objective of validating the effectiveness and usability in concrete of RSFs of two different types, and their behaviour when compared with commercial steel fibres. With the results and lessons learnt from this campaign in mind, the main experimental campaign is then described, consisting in cracking tests of eight unscaled beams in pure bending (varying RSF content, Ø/s,eff and concrete cover) and twelve columns subjected to imposed displacement and axial force (varying RSF content, Ø/s,eff and squashing load ratio). The results obtained from the main campaign are presented and discussed, with particular focus on the improvement in cracking behaviour for the beams and columns, and structural stiffness for the columns. They are then compared with the proposed model. The main parameters studied to describe cracking and sectional behaviours of the beam tests are crack spacing, mean steel strain and crack width, while for the column tests these were moment/curvature, stress in rebars and crack with at column embedment. The comparison showed satisfactory agreement between experimental results and model predictions. Moreover, it is pointed out the improvement in cracking behaviour due to the addition of RSF for elements with low reinforcement ratios, elements with low squashing load ratios and for crack width control of elements with large concrete covers, thus representing results with a immediate impact in engineering practice (slab design, tanks, integral structures, etc.). Applications of RSF to actual structures are finally presented. Two cases of elements in pure bending are presented, namely a simple supported beam and a water treatment tank. In both cases the addition of RSF to concrete leads to improvements in cracking behaviour. Then, using the simplified model for the serviceability analysis of columns of jointless structures, the maximum achievable jointless length of typical cases of a bridge and building is obtained. In XIIparticular, it is shown how the limitations of current engineering practice (this is especially the case of buildings) can be increased by considering the actual behaviour of RC supports. Then, the same cases are modified considering the use of RSF, and the improvements both in maximum achievable length and in crack width for a given length and imposed strain at the deck/first floor are shown.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ternary molybdates and tungstates ABO4 (A=Ca, Pb and B= Mo, W) are a group of materials that could be used for a variety of optoelectronic applications. We present a study of the optoelectronic properties based on first-principles using several orbitaldependent one-electron potentials applied to several orbital subspaces. The optical properties are split into chemical-species contributions in order to quantify the microscopic contributions. Furthermore, the effect of using several one-electron potentials and orbital subspaces is analyzed. From the results, the larger contribution to the optical absorption comes from the B-O transitions. The possible use as multi-gap solar cell absorbents is analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes bibliography.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanoscale effects in miniature optical fibre-based devices are reviewed. Propagation of the fundamental mode in subwavelength diameter optical fibres and whispering gallery modes in fibres having the diameter much greater than the wavelength are considered. © 2014 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new numerical model which incorporates Brillouin shift frequency variations arising from fibre inhomogeneities has been developed for stimulated Brillouin scattering in optical fibres. This enables simulations of backscattered and transmitted power as functions of input power based only on known physical and material parameters as well as the polarisation factor and the measured Brillouin gain linewidth for the fibre. Agreement between modelled and experimental power characteristics for a CW input is excellent.