998 resultados para Oplysningsvæsenets fond, Norway.
Resumo:
An early establishment of selective breeding programs on Atlantic salmon has been crucial for the success of developing efficient and sustainable salmon farming in Norway. A national selective breeding program was initiated by AKVAFORSK at the beginning of the 1970s, by collecting fertilized eggs from more than 40 Norwegian river populations. Several private selective breeding programs were also initiated in the 1970s and 1980s. While these private programs were initiated using individual selection (i.e. massselection) to genetically improve growth, the national program was designed to gradually include all economically important traits in the breeding objective (i.e. growth, age at sexual maturation, disease resistance and quality traits) using a combined family and within-family selection strategy. Independent of which selection strategy and program design used, it is important to secure and maintain a broad genetic variation in the breeding populations to maximize selection response. It has been documented that genetically improved salmon from the national selective breeding program grow twice as fast as wild Atlantic salmon and require 25 per cent less feed, while salmon representing the private breeding programs all show an intermediate growth performance. As a result of efficient dissemination of genetically improved Atlantic salmon, the Norwegian salmon farming industry has reduced its feed costs by more than US$ 230 million per year! The national selective breeding program on Atlantic salmon was commercialized into a breeding company (AquaGen) in 1992. Five years later, several private companies and the AKVAFORSK Genetics Center (AFGC) established a second breeding company (SalmoBreed) using breeding candidates from one of the private breeding programs. These two breeding companies have similar products, but different strategies on how to organize the breeding program and to disseminate the genetically improved seed to the Norwegian salmon industry. Greater competition has increased the necessity to document the genetic gain obtained from the different programs and to market the economic benefits of farming the genetically improved breeds. Both breeding companies have organized their dissemination to get a sufficient share of the economic benefits in order to sustain and improve their breeding programs.
Resumo:
A cruise of the R. V. Capricorne in May 1973, in inner part of the gulf of Guinea, allowed the authors to identify the main part of the Atlantic circulation at the longitude of 5 degrees E, between 4 degrees N and 4 degrees S. It gave new data on the termination of the equatorial undercurrent. At the equator, under the westward south equatorial current flows the Atlantic equatorial undercurrent with a maximum eastward velocity of 90 cm/sec at 30 m depth linked to a salinity maximum higher than 36.20 ppt. Below the equatorial undercurrent, about 80-100 m depth, flows a westward current with a velocity as high as 30 cm/sec. At 4 degrees S, the south equatorial countercurrent is well delineated by a high salinity core (more than 36.10 ppt) at 30 m depth with an eastward velocity core of 40 cm/sec. On the contrary, near 3 degrees 30N, a high salinity core (36.10 ppt) flows westwards with a speed of 40 cm/sec at 40 m depth: it is the "return flow" of the undercurrent (Hisard and Moliere 1974). At 4 degrees N the Guinea current carries eastwards surface salinities of 34.50 ppt at 40 cm/sec. Off Cape Lopez (0 degrees 35'S-8 degrees 42'E) the high salinity core of the undercurrent becomes wider near the shore. It is 25m wide offshore, and 70 m wide near the cape. A part of undercurrent water extends northwards, then flows westwards with the subsurface westward circulation in the inner part of the Gulf of Guinea. Another part flows south-southwestwards in a high salinity tongue along the African coast to 4 degrees S. South-west of Cape Lopez, the trades divergence contributes to an upwelling of cold and high salinity water; this water increases at the Cape Lopez front.
Resumo:
Dinoflagellate cyst records were analysed from four sediment cores from the inner Oslofjord. The cores covered the pre-industrial period, and the most important period of human population growth associated with industrial development of the region, from the mid-1800s to the present, including the reported development of cultural eutrophication. Comparisons between the cyst records and the known history of eutrophication suggest cyst signals that should prove useful for tracing the development of eutrophication. The eutrophication signal consisted of a doubling of total cyst concentration, and a marked increase in one species in particular,Lingulodinium machaerophorum(from <5 to around 50% of the assemblages) with increased eutrophication. In the core considered most representative of general water quality in the inner fjord, these trends reversed back to pre-industrial levels during the 1980s and 1990s when improved sewage treatment took effect.
Resumo:
The Norway pout (Trisopterus esmarkii) stock in the North Sea has experienced poor recruitment recently. Herring (Clupea harengus) has been suggested to be a major predator on fish larvae in the North Sea. We investigated possible interactions between herring and Norway pout using a simple statistical analysis and a modified stock - recruit relationship. There was a significant negative relationship (linear regression, r = 20.44, p < 0.05) between total herring biomass and recruitment of Norway pout. The spawning stock of Norway pout is typically dominated by 2-year-olds, and there was a strong negative relationship (linear regression, r = 20.79, p < 0.01) between herring biomass and Norway pout spawning-stock biomass (SSB) 2 years later. A Beverton-Holt model fitted to stock recruit data of Norway pout produced a rather poor correlation (r(2) = 0.04). However, when only the Norway pout SSB not overlapping with herring is considered, the fit between the model and the stock - recruit data improves (r(2) = 0.31). The analyses indicate a negative impact by herring on recruitment of Norway pout, the most plausible cause for this being herring predation on Norway pout larvae, but field studies are needed to verify such predation.
Resumo:
The European lobster is distributed throughout the south and western regions of the Norwegian coast. A previous lobster allozyme investigation (1993) in the Tysfjord region, north of the Arctic Circle demonstrated that the lobster population from this region was genetically different from lobster samples collected in other parts of Norway. More detailed investigation including supplementary extensive sampling and additional allozyme, microsatellite and mtDNA analyses are reported here. This investigation supports the genetic distinctness of the Tysfjord population and shows that this is mainly due to a reduction (60�70%) in gene diversity (observed heterozygosities and number of alleles) compared with lobsters from more southern regions. In addition to the Tysfjord region, the comprehensive sampling also included lobsters found in the adjacent Nordfolda fjord system. Genetic analyses provided evidence for significant differences between the lobster populations of Tysfjord and Nordfolda, even though they are separated by a coastal distance of only 142 km. The two populations were also different with regards to several biological characteristics such as body size. The genetic difference between these two geographically close populations is likely to be due to the local hydrological conditions, preventing larval dispersal between the fjord systems. Assessment of lobster abundance in the north-west region suggests that the sub-arctic lobster populations are geographically isolated.
Behavioural determinants of daily energy intake during a 28-day outdoor expedition in Arctic Norway.