975 resultados para Open Reading Frame
Resumo:
This report describes the identification of a murine cytomegalovirus (MCMV) G protein-coupled receptor (GCR) homolog. This open reading frame (M33) is most closely related to, and collinear with, human cytomegalovirus UL33, and homologs are also present in human herpesvirus 6 and 7 (U12 for both viruses). Conserved counterparts in the sequenced alpha- or gammaherpesviruses have not been identified to date, suggesting that these genes encode proteins which are important for the biological characteristics of betaherpesviruses. We have detected transcripts for both UL33 and M33 as early as 3 or 4 h postinfection, and these reappear at late times. In addition, we have identified N-terminal splicing for both the UL33 and M33 RNA transcripts. For both open reading frames, splicing results in the introduction of amino acids which are highly conserved among known GCRs. To characterise the function of the M33 in the natural host, two independent MCMV recombinant viruses were prepared, each of which possesses an M33 open reading frame which has been disrupted with the beta-galactosidase gene. While the recombinant M33 null viruses showed no phenotypic differences in replication from wild-type MCMV in primary mouse embryo fibroblasts in vitro, they showed severely restricted growth in the salivary glands of infected mice. These data suggest that M33 plays an important role in vivo, in particular in the dissemination to or replication in the salivary gland, and provide the first evidence for the function of a viral GCR homolog in vivo.
Resumo:
The longest open reading frame of PKHD1 (polycystic kidney and hepatic disease 1), the autosomal recessive polycystic kidney disease (ARPKD) gene, encodes a single-pass, integral membrane protein named polyductin or fibrocystin. A fusion protein comprising its intracellular C-terminus, FP2, was previously used to raise a polyclonal antiserum shown to detect polyductin in several human tissues, including liver. In the current study, we aimed to investigate by immunohistochemistry the detailed polyductin localization pattern in normal (ductal plate [DP], remodelling ductal plate [RDP], remodelled bile ducts) and abnormal development of the primitive intrahepatic biliary system, known as ductal plate malformation (DPM). This work also included the characterization of polyductin expression profile in various histological forms of neonatal and infantile cholestasis, and in cholangiocellular carcinoma (CCC) and hepatocellular carcinoma (HCC). We detected polyductin expression in the intrahepatic biliary system during the DP and the RDP stages as well as in DPM. No specific staining was found at the stage of remodelled bile ducts. Polyductin was also detected in liver biopsies with neonatal cholestasis, including mainly biliary atresia and neonatal hepatitis with ductular reaction as well as congenital hepatic fibrosis. In addition, polyductin was present in CCC, whereas it was absent in HCC. Polyductin was also co-localized in some DP cells together with oval stem cell markers. These results represent the first systematic study of polyductin expression in human pathologies associated with abnormal development of intrahepatic biliary tree, and support the following conclusions: (i) polyductin expression mirrors developmental properties of the primitive intrahepatic biliary system; (ii) polyductin is re-expressed in pathological conditions associated with DPM and (iii) polyductin might be a potential marker to distinguish CCC from HCC.
Resumo:
Presenilins (PS) are integral membrane proteins involved, among other functions, in regulated intramembrane proteolysis. In this study, we report the identification and characterization of a complementary DNA from Schistosoma mansoni exhibiting a significant homology to human and nonvertebrate presinilins. S. mansoni contained a 1,485 bp open reading frame encoding a predicted protein of 494 amino acids. Alignment of predicted amino acid sequence of S. mansoni with PS (SmPS) from other species revealed up to 40% similarity shared among the investigated organisms. In addition, phylogenetic analyses demonstrated SmPS being closely related to its orthologues found in Schistosoma japonicum and Caenorhabditis elegans. Expression analysis of SmPS using quantitative real-time PCR revealed that the transcript is up-regulated in the egg stage. We hypothesize that the high level of SmPS in the S. mansoni embryo correlates to an important role during cellular signaling associated to larval development. To our knowledge, this study represents the first attempt to investigate the existence and abundance of PS from a helminth parasite.
Resumo:
Background: Deficiency of 11 beta-hydroxylase results in the impairment of the last step of cortisol synthesis. In females, the phenotype of this disorder includes different degrees of genital ambiguity and arterial hypertension. Mutations in the CYP11B1 gene are responsible for this disease. Objective: The objective of the study was to screen the CYP11B1 gene for mutations in two unrelated Brazilian females with congenital adrenal hyperplasia due to 11 beta-hydroxylase deficiency. Design: The coding and intron-exon junction regions of CYP11B1 were totally sequenced. A putative splice mutation was further investigated by minigene transcription. Results: We report two novel CYP11B1 mutations in these Brazilian patients. An Arabian Lebanese descendent female was found to be homozygous for a cytosine insertion at the beginning of exon 8, changing the 404 arginine to proline. It alters the open reading frame, creating a putative truncated protein at 421 residue, which eliminates the domain necessary for the association of heme prosthetic group. A severely virilized female was homozygous for the g. 2791G>A transition in the last position of exon 4. This nucleotide is also part of 5` intron 4 donor splice site consensus sequence. Minigene experiments demonstrated that g. 2791G>A activated an alternative splice site within exon 4, leading to a 45-bp deletion in the transcript. The putative translation of such modified mRNA indicates a truncated protein at residue 280. Conclusions: We describe two novel mutations, g. 4671_4672insC and g. 2791G>A, that drastically affects normal protein structure. These mutations abolish normal enzyme activity, leading to a severe phenotype of congenital adrenal hyperplasia due to 11 beta-hydroxylase deficiency. (J Clin Endocrinol Metab 94: 3481-3485, 2009)
Resumo:
Dps, found in many eubacterial and archaebacterial species, appears to protect cells from oxidative stress and/or nutrient-limited environment. Dps has been shown to accumulate during the stationary phase, to bind to DNA non-specifically, and to form a crystalline structure that compacts and protects the chromosome. Our previous results have indicated that Dps is glycosylated at least for a certain period of the bacterial cell physiology and this glycosylation is thought to be orchestrated by some factors not yet understood, explaining our difficulties in standardizing the Dps purification process. In the present work, the open reading frame of the dps gene, together with all the upstream regulatory elements, were cloned into a PCR cloning vector. As a result, the expression of dps was also controlled by the plasmid system introduced in the bacterial cell. The gene was then over-expressed regardless of the growth phase of the culture and a glycosylated fraction was purified to homogeneity by lectin-immobilized chromatography assay. Unlike the high level expression of Dps in Salmonella cells, less than 1% of the recombinant protein was purified by affinity chromatography using jacalin column. Sequencing and mass spectrometry data confirmed the identity of the dps gene and the protein, respectively. In spite of the low level of purification of the jacalin-binding Dps, this work shall aid further investigations into the mechanism of Dps glycosylation. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Using differential display-polymerase chain reaction, we identified a novel gene sequence, designated solid tumor-associated gene 1 (STAG1), that is upregulated in renal cell carcinoma (RCC). The full-length cDNA (4839 bp) encompassed the recently reported androgen-regulated prostatic cDNA PMEPA1 and so we refer to this gene as STAG1/PMEPA1, Two STAG1/PMEPA1 mRNA transcripts of approximately 2.7 an 5 kb, with identical coding regions but variant 3' untranslated regions, were predominantly expressed in normal prostate tissue and at lower levels in the ovary. The expression of this gene was upregulated in 87% of RCC samples and also was upregulated in stomach and rectal adenocarcinomas. In contrast, STAG1/PMEPA1 expression was barely detectable in leukemia and lymphoma samples, Analysis of expressed sequence tag databases showed that STAG1/PMEPA1 also was expressed in pancreatic, endometrial, and prostatic adenocarcinomas. The STAG1/PMEPA1 cDNA encodes a 287-amino-acid protein containing a putative transmembrane domain and motifs that suggest that it may bind src homology 3- and tryptophan tryptophan domain-containing proteins. This protein shows 67% identity to the protein encoded by the chromosome 18 open reading frame 1 gene. Translation of STAG1/PMEPA1 mRNA in vitro showed two products of 36 and 39 kDa, respectively, suggesting that translation may initiate at more than one site. Comparison to genomic clones showed that STAG1/PMEPA1 was located on chromosome 20q13 between microsatellite markers D20S183 and D20S173 and spanned four exons and three introns. The upregulation of this gene in several solid tumors indicated that it may play an important role in tumorigenesis. (C) 2001 Wiley-Liss, Inc.
Resumo:
Early pregnancy factor (EPF) is a secreted protein with growth regulatory and immunomodulatory properties. Human platelet-derived EPF shares amino acid sequence identity with chaperonin 10 (Cpn10), a mitochondrial matrix protein which functions as a molecular chaperone. The striking differences in cellular localization and function of the two proteins suggest differential regulation of production reflecting either alternative transcription of the same gene or transcription from different genes. In mammals and more distantly related genera, there is a large gene family with homology to CPN 10 cDNA, which includes intronless copies of the coding sequence. To determine whether this could represent the gene for EPF, we have screened a mouse genomic library and sequenced representative Cpn10 family members, looking for a functional gene distinct from that of Cpn 10, which could encode EPF. Eight distinct genes were identified. Cpn10 contains introns, while other members are intronless. Six of these appear to be pseudogenes, and the remaining member, Cpn10-rs1, would encode a full-length protein. The 309-bp open reading frame (ORF) is identical to that of mouse Cpn10 cDNA with the exception of three single-base changes, two resulting in amino acid changes. Only one further single nucleotide difference between the Cpn10-rs1 and Cpn10 cDNAs is observed, located in the 3' UTR. Single nucleotide primer extension was applied to discriminate between Cpn10-rs1 and Cpn10 expression. Cpn10, which is ubiquitous, was detected in all tissue samples tested, whereas Cpn10-rs1 was expressed selectively. The pattern was completely coincident with known patterns of EPF activity, strongly suggesting that Cpn10-rs1 does encode EPF. The complete ORF of Cpn10-rs1 was expressed in E. coli. The purified recombinant protein was found to be equipotent with native human platelet-derived EPF in the bioassay for EPF, the rosette inhibition test.
Resumo:
Saccharomyces cerevisiae protoplasts exposed to bovine papillomavirus type 1 (BPV-1) virions demonstrated uptake of virions on electron microscopy. S. cerevisiae cells looked larger after exposure to BPV-1 virions, and cell wall regeneration was delayed. Southern blot hybridization of Hirt DNA from cells exposed to BPV-1 virions demonstrated BPV-1 DNA, which could be detected over 80 days of culture and at least 13 rounds of division. Two-dimensional gel analysis of Hirt DNA showed replicative intermediates, confirming that the BPV-1 genome was replicating within S. cerevisiae. Nicked circle, linear, and supercoiled BPV-1 DNA species were observed in Hirt DNA preparations from S. cerevisiae cells infected for over 50 days, and restriction digestion showed fragments hybridizing to BPV-1 in accord with the predicted restriction map for circular BPV-1 episomes. These data suggest that BPV-1 can infect S. cerevisiae and that BPV-1 episomes can replicate in the infected S. cerevisiae cells.
Resumo:
Polynucleotide immunisation with the E7 gene of human papillomavirus (HPV) type 16 induces only moderate levels of immune response, which may in part be due to limitation in E7 gene expression influenced by biased HPV codon usage. Here we compare for expression and immunogenicity polynucleotide expression plasmids encoding wild-type (pWE7) or synthetic codon optimised (pHE7) HPV16 E7 DNA. Cos-1 cells transfected with pHE7 expressed higher levels of E7 protein than similar cells transfected with pW7. C57BL/6 mice and F1 (C57X FVB) E7 transgenic mice immunised intradermally with E7 plasmids produced high levels of anti-E7 antibody. pHE7 induced a significantly stronger E7-specific cytotoxic T-lymphocyte response than pWE7 and 100% tumour protection in C57BL/6 mice, but neither vaccine induced CTL in partially E7 tolerant K14E7 transgenic mice. The data indicate that immunogenicity of an E7 polynucleotide vaccine can be enhanced by codon modification. However, this may be insufficient for priming E7 responses in animals with split tolerance to E7 as a consequence of expression of E7 in somatic cells. (C) 2002 Elsevier Science (USA).
Resumo:
The four known tropomyosin genes have highly conserved DNA and amino acid sequences, and at least 18 isoforms are generated by alternative RNA splicing in muscle and non-muscle cells. No rabbit tropomyosin nucleotide sequences are known, although protein sequences for alpha- and beta-tropomyosin expressed by rabbit skeletal muscle have been described. Subtractive hybridisation was used to select for genes differentially expressed in rabbit aortic smooth muscle cells (SMC), during the change in cell phenotype in primary culture that is characterised by a loss of cytoskeletal filaments and contractile proteins. This led to the cloning of a tropomyosin gene predominantly expressed in rabbit SMC during this change. The full-length cDNA clone, designated rabbit TM-beta, contains an open reading frame of 284 amino acids, 5' untranslated region (UTR) of I 17 base pairs and 3' UTR of 79 base pairs. It is closely related to the beta-gene isoforms in other species, with the highest homology in DNA and protein sequences to the human fibroblast isoform TM-1 (91.7% identity in 1035 bp and 93.3% identity in the entire 284 amino acid sequence of the protein), It differs from rabbit skeletal muscle P-tropomyosin (81.7% homology at the protein level) mainly in two regions at amino acids 189-213 and 258-283 suggesting alternative splicing of exons 6a for 6b and 9d for 9a. Since this TM-P gene was the only gene strongly enough expressed in SMC changing phenotype to be observed by the subtractive hybridisation screen, it likely plays a significant role in this process. (C) 2002 Published by Elsevier Science Ltd.
Resumo:
Darwin's paradigm holds that the diversity of present-day organisms has arisen via a process of genetic descent with modification, as on a bifurcating tree. Evidence is accumulating that genes are sometimes transferred not along lineages but rather across lineages. To the extent that this is so, Darwin's paradigm can apply only imperfectly to genomes, potentially complicating or perhaps undermining attempts to reconstruct historical relationships among genomes (i.e., a genome tree). Whether most genes in a genome have arisen via treelike (vertical) descent or by lateral transfer across lineages can be tested if enough complete genome sequences are used. We define a phylogenetically discordant sequence (PDS) as an open reading frame (ORF) that exhibits patterns of similarity relationships statistically distinguishable from those of most other ORFs in the same genome. PDSs represent between 6.0 and 16.8% (mean, 10.8%) of the analyzable ORFs in the genomes of 28 bacteria, eight archaea, and one eukaryote (Saccharomyces cerevisiae). In this study we developed and assessed a distance-based approach, based on mean pairwise sequence similarity, for generating genome trees. Exclusion of PDSs improved bootstrap support for basal nodes but altered few topological features, indicating that there is little systematic bias among PDSs. Many but not all features of the genome tree from which PDSs were excluded are consistent with the 16S rRNA tree.
Resumo:
A newly described non-long terminal repeat (non-LTR) retrotransposon element was isolated from the genome of the Oriental schistosome, Schistosoma japonicum. At least 1000 partial copies of the element, which was named pido, were dispersed throughout the genome of S. japonicum. As is usual with non-LTR retrotransposons, it is expected that many pido elements will be 5'-truncated. A consensus sequence of 3564 bp of the truncated pido element was assembled from several genomic fragments that contained pido-hybridizing sequences. The sequence encoded part of the first open reading frame (ORF), the entire second ORF and, at its 3'-terminus, a tandemly repetitive, A-rich (TA(6)TA(5)TA(8)) tail, The ORF1 of pido encoded a nucleic acid binding protein and ORF2 encoded a retroviral-like polyprotein that included apurinic/apyrimidinic endonuclease (EN) and reverse transcriptase (RT) domains, in that order. Based on its sequence and structure, and phylogenetic analyses of both the RT and EN domains, pido belongs to the chicken repeat 1 (CR1)-like lineage of elements known from the chicken, turtle, puffer fish, mosquitoes and other taxa. pido shared equal similarity with CRI from chicken, an uncharacterized retrotransposon from Caenorhabditis elegans and SR1 (a non-LTR retrotransposon) from the related blood fluke Schistosoma mansoni; the level of similarity between pido and SR1 indicated that these two schistosome retrotransposons were related but not orthologous. The findings indicate that schistosomes have been colonized by at least two discrete CRI-like elements. Whereas pido did not appear to have a tight target site specificity, at least one copy of pido has inserted into the 3'-untranslated region of a protein-encoding gene (GeriBank AW736757) of as yet unknown identity. mRNA encoding the RT of pido was detected by reverse transcription-polymerase chain reaction in the egg, miracidium. and adult developmental stages of S. japonicum, indicating that the RT domain was transcribed and suggesting that pido was replicating actively and mobile within the S. japonicum genome. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A new RTE-like, non-long terminal repeat retrotransposon, termed SjR2, from the human blood fluke, Schistosoma japonicum, is described. SjR2 is similar to3.9 kb in length and is constituted of a single open reading frame encoding a polyprotein with apurinic/apyrimidinic endonuclease and reverse transcriptase domains. The open reading frame is bounded by 5'- and 3'-terininal untranslated regions and, at its 3-terminus, SjR2 bears a short (TGAC)(3) repeat. Phylogenetic analyses based on conserved domains of reverse transcriptase or endonuclease revealed that SjR2 belonged to the RTE clade of non-long terminal repeat retrotransposons. Further, SjR2 was homologous, but probably not orthologous, to SR2 front the African blood fluke, Schistosoma mansoni; this RTE-like family of non-long terminal repeat retrotransposons appears to have arisen before the divergence of the extant schistosome species. Hybridisation analyses indicated that similar to 10,000 copies of SjR2 were dispersed throughout the S. japonicum chromosomes, accounting for up to 14% of the nuclear genome. Messenger RNAs encoding the reverse transcriptase and endonuclease domains of SjR2 were detected in several developmental stages of the schistosome, indicating that the retrotransposon was actively replicating within the genome of the parasite. Exploration of the coding and non-coding regions of SjR2 revealed two notable characteristics. First, the recombinant reverse transcriptase domain of SjR2 expressed in insect cells primed reverse transcription of SjR2 mRNA in vitro. By contrast, recombinant SjR2-endonuclease did not appear to cleave schistosome or plasmid DNA. Second, the 5'-untranslated region of SjR2 was >80% identical to the 3-untranslated region of a schistosome heat shock protein-70 gene (hsp-70) in the antisense orientation, indicating that SjR2-like elements were probably inserted into the non-coding regions of ancestral S. japonicum HSP-70, probably after the species diverged from S. mansoni. (C) 2002 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Macropodid herpesvirus 1 (MaHV-1) is an unclassified alphaherpesvirus linked with the fatal infections of kangaroos and other marsupials. During the characterisation of the internal repeat region of MaHV-1, an open reading frame (ORF) encoding for thymidylate synthase (TS) gene was identified and completely sequenced. Southern blot analysis confirmed the presence of two copies of the TS gene in the MaHV-1 genome as expected. Computer analysis of the TS ORF showed it was 948 nucleotides in length. A putative polyadenylation signal was identified 17-22 bp inside the ORF implying a minimal or absent 3' untranslated region. The predicted polypeptide was 316 amino acid residues in length and contained the highly conserved motifs for folate binding and F-dUMP binding, typical of all TS enzymes. Interestingly, MaHV-1 TS polypeptide had highest similarity to the human TS polypeptide (81%) compared to the TS polypeptides of other herpesviruses (72-75%). Immediately upstream of the TS gene, a second ORF of 510 bp, encoding a polypeptide with 170 amino acid residues, was identified. The carboxyl domain of this MaHV-1 polypeptide shared 68% similarity to a 59 amino acid motif of human herpesvirus 1 ICP34.5, identifying it as the MaHV-1 ICP34.5 homologue. This is the first report of a herpesvirus that encodes for both TS and ICP34.5.
Resumo:
Up-regulation of receptor-ligand pairs during interaction of an MHC-presented epitope on dendritic cells (DCs) with cognate TCR may amplify, sustain, and drive diversity in the ensuing T cell immune response. Members of the TNF ligand superfamily and the TNFR superfamily contribute to this costimulatory molecule signaling. In this study, we used replication deficient adenoviruses to introduce a model tumor-associated Ag (the E7 oncoprotein of human papillomavirus 16) and the T cell costimulatory molecule 4-IBBL into murine DCs, and monitored the ability of these recombinant DO to elicit E7-directed T cell responses following immunization. Splenocytes from mice immunized with DCs expressing E7 alone elicited E7-directed effector and memory CTL responses. Coexpression of 4-1BBL in these E7-expressing DO increased effector and memory CTL responses when they were used for immunization. 4-1BBL expression up-regulated CD80 and CD86 second signaling molecules in DO. We also report an additive effect of 4-IBBL and receptor activator of NF-kappaB/receptor activator of NF-kappaB ligand coexpression in E7-transduced DC inummogens on E7-directed effector and memory CTL responses and on MHC class II and CD80/86 expression in DCs. Additionally, expression of 4-1BBL in E7-transduced DCs reduced nonspecific T cell activation characteristic of adenovirus vector-associated immunization. The results have generic implications for improved or tumor Ag-expressing DC vaccines by incorporation of exogenous 4-1BBL. There are also specific implications for an improved DC-based vaccine for human papillomavirus 16-associated cervical carcinoma.