938 resultados para Objective function values
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
O trabalho em pauta tem como objetivo o modelamento da crosta, através da inversão de dados de refração sísmica profunda, segundo camadas planas horizontais lateralmente homogêneas, sobre um semi-espaço. O modelo direto é dado pela expressão analítica da curva tempo-distância como uma função que depende da distância fonte-estação e do vetor de parâmetros velocidades e espessuras de cada camada, calculado segundo as trajetórias do raio sísmico, regidas pela Lei de Snell. O cálculo dos tempos de chegada por este procedimento, exige a utilização de um modelo cujas velocidades sejam crescentes com a profundidade, de modo que a ocorrência das camadas de baixa velocidade (CBV) é contornada pela reparametrização do modelo, levando-se em conta o fato de que o topo da CBV funciona apenas como um refletor do raio sísmico, e não como refrator. A metodologia de inversão utilizada tem em vista não só a determinação das soluções possíveis, mas também a realização de uma análise sobre as causas responsáveis pela ambiguidade do problema. A região de pesquisa das prováveis soluções é vinculada segundo limites superiores e inferiores para cada parâmetro procurado, e pelo estabelecimento de limites superiores para os valores de distâncias críticas, calculadas a partir do vetor de parâmetros. O processo de inversão é feito utilizando-se uma técnica de otimização do ajuste de curvas através da busca direta no espaço dos parâmetros, denominado COMPLEX. Esta técnica apresenta a vantagem de poder ser utilizada com qualquer função objeto, e ser bastante prática na obtenção de múltiplas soluções do problema. Devido a curva tempo-distância corresponder ao caso de uma multi-função, o algoritmo foi adaptado de modo a minimizar simultaneamente várias funções objetos, com vínculos nos parâmetros. A inversão é feita de modo a se obter um conjunto de soluções representativas do universo existente. Por sua vez, a análise da ambiguidade é realizada pela análise fatorial modo-Q, através da qual é possível se caracterizar as propriedades comuns existentes no elenco das soluções analisadas. Os testes com dados sintéticos e reais foram feitos tendo como aproximação inicial ao processo de inversão, os valores de velocidades e espessuras calculados diretamente da interpretação visual do sismograma. Para a realização dos primeiros, utilizou-se sismogramas calculados pelo método da refletividade, segundo diferentes modelos. Por sua vez, os testes com dados reais foram realizados utilizando-se dados extraídos de um dos sismogramas coletados pelo projeto Lithospheric Seismic Profile in Britain (LISPB), na região norte da Grã-Bretanha. Em todos os testes foi verificado que a geometria do modelo possui um maior peso na ambiguidade do problema, enquanto os parâmetros físicos apresentam apenas suaves variações, no conjunto das soluções obtidas.
Resumo:
O método de empilhamento por Superfície de Reflexão Comum (SRC) produz seções simuladas de afastamento nulo (AN) por meio do somatório de eventos sísmicos dos dados de cobertura múltipla contidos nas superfícies de empilhamento. Este método não depende do modelo de velocidade do meio, apenas requer o conhecimento a priori da velocidade próxima a superfície. A simulação de seções AN por este método de empilhamento utiliza uma aproximação hiperbólica de segunda ordem do tempo de trânsito de raios paraxiais para definir a superfície de empilhamento ou operador de empilhamento SRC. Para meios 2D este operador depende de três atributos cinemáticos de duas ondas hipotéticas (ondas PIN e N), observados no ponto de emergência do raio central com incidência normal, que são: o ângulo de emergência do raio central com fonte-receptor nulo (β0) , o raio de curvatura da onda ponto de incidência normal (RPIN) e o raio de curvatura da onda normal (RN). Portanto, o problema de otimização no método SRC consiste na determinação, a partir dos dados sísmicos, dos três parâmetros (β0, RPIN, RN) ótimos associados a cada ponto de amostragem da seção AN a ser simulada. A determinação simultânea destes parâmetros pode ser realizada por meio de processos de busca global (ou otimização global) multidimensional, utilizando como função objetivo algum critério de coerência. O problema de otimização no método SRC é muito importante para o bom desempenho no que diz respeito a qualidade dos resultados e principalmente ao custo computacional, comparado com os métodos tradicionalmente utilizados na indústria sísmica. Existem várias estratégias de busca para determinar estes parâmetros baseados em buscas sistemáticas e usando algoritmos de otimização, podendo estimar apenas um parâmetro de cada vez, ou dois ou os três parâmetros simultaneamente. Levando em conta a estratégia de busca por meio da aplicação de otimização global, estes três parâmetros podem ser estimados através de dois procedimentos: no primeiro caso os três parâmetros podem ser estimados simultaneamente e no segundo caso inicialmente podem ser determinados simultaneamente dois parâmetros (β0, RPIN) e posteriormente o terceiro parâmetro (RN) usando os valores dos dois parâmetros já conhecidos. Neste trabalho apresenta-se a aplicação e comparação de quatro algoritmos de otimização global para encontrar os parâmetros SRC ótimos, estes são: Simulated Annealing (SA), Very Fast Simulated Annealing (VFSA), Differential Evolution (DE) e Controlled Rando Search - 2 (CRS2). Como resultados importantes são apresentados a aplicação de cada método de otimização e a comparação entre os métodos quanto a eficácia, eficiência e confiabilidade para determinar os melhores parâmetros SRC. Posteriormente, aplicando as estratégias de busca global para a determinação destes parâmetros, por meio do método de otimização VFSA que teve o melhor desempenho foi realizado o empilhamento SRC a partir dos dados Marmousi, isto é, foi realizado um empilhamento SRC usando dois parâmetros (β0, RPIN) estimados por busca global e outro empilhamento SRC usando os três parâmetros (β0, RPIN, RN) também estimados por busca global.
Resumo:
Objective: To determine the prevalence of exercise-induced bronchoconstriction among elite long-distance runners in Brazil and whether there is a difference in the training loads among athletes with and without exercise-induced bronchoconstriction. Methods: This was a cross-sectional study involving elite long-distance runners with neither current asthma symptoms nor a diagnosis of exercise-induced bronchoconstriction. All of the participants underwent eucapnic voluntary hyperpnea challenge and maximal cardiopulmonary exercise tests, as well as completing questionnaires regarding asthma symptoms and physical activity, in order to monitor their weekly training load. Results: Among the 86 male athletes recruited, participation in the study was agreed to by 20, of whom 5 (25%) were subsequently diagnosed with exercise-induced bronchoconstriction. There were no differences between the athletes with and without exercise-induced bronchoconstriction regarding anthropometric characteristics, peak oxygen consumption, baseline pulmonary function values, or reported asthma symptoms. The weekly training load was significantly lower among those with exercise-induced bronchoconstriction than among those without. Conclusions: In this sample of long-distance runners in Brazil, the prevalence of exercise-induced bronchoconstriction was high.
Resumo:
The aim of this Doctoral Thesis is to develop a genetic algorithm based optimization methods to find the best conceptual design architecture of an aero-piston-engine, for given design specifications. Nowadays, the conceptual design of turbine airplanes starts with the aircraft specifications, then the most suited turbofan or turbo propeller for the specific application is chosen. In the aeronautical piston engines field, which has been dormant for several decades, as interest shifted towards turboaircraft, new materials with increased performance and properties have opened new possibilities for development. Moreover, the engine’s modularity given by the cylinder unit, makes it possible to design a specific engine for a given application. In many real engineering problems the amount of design variables may be very high, characterized by several non-linearities needed to describe the behaviour of the phenomena. In this case the objective function has many local extremes, but the designer is usually interested in the global one. The stochastic and the evolutionary optimization techniques, such as the genetic algorithms method, may offer reliable solutions to the design problems, within acceptable computational time. The optimization algorithm developed here can be employed in the first phase of the preliminary project of an aeronautical piston engine design. It’s a mono-objective genetic algorithm, which, starting from the given design specifications, finds the engine propulsive system configuration which possesses minimum mass while satisfying the geometrical, structural and performance constraints. The algorithm reads the project specifications as input data, namely the maximum values of crankshaft and propeller shaft speed and the maximal pressure value in the combustion chamber. The design variables bounds, that describe the solution domain from the geometrical point of view, are introduced too. In the Matlab® Optimization environment the objective function to be minimized is defined as the sum of the masses of the engine propulsive components. Each individual that is generated by the genetic algorithm is the assembly of the flywheel, the vibration damper and so many pistons, connecting rods, cranks, as the number of the cylinders. The fitness is evaluated for each individual of the population, then the rules of the genetic operators are applied, such as reproduction, mutation, selection, crossover. In the reproduction step the elitist method is applied, in order to save the fittest individuals from a contingent mutation and recombination disruption, making it undamaged survive until the next generation. Finally, as the best individual is found, the optimal dimensions values of the components are saved to an Excel® file, in order to build a CAD-automatic-3D-model for each component of the propulsive system, having a direct pre-visualization of the final product, still in the engine’s preliminary project design phase. With the purpose of showing the performance of the algorithm and validating this optimization method, an actual engine is taken, as a case study: it’s the 1900 JTD Fiat Avio, 4 cylinders, 4T, Diesel. Many verifications are made on the mechanical components of the engine, in order to test their feasibility and to decide their survival through generations. A system of inequalities is used to describe the non-linear relations between the design variables, and is used for components checking for static and dynamic loads configurations. The design variables geometrical boundaries are taken from actual engines data and similar design cases. Among the many simulations run for algorithm testing, twelve of them have been chosen as representative of the distribution of the individuals. Then, as an example, for each simulation, the corresponding 3D models of the crankshaft and the connecting rod, have been automatically built. In spite of morphological differences among the component the mass is almost the same. The results show a significant mass reduction (almost 20% for the crankshaft) in comparison to the original configuration, and an acceptable robustness of the method have been shown. The algorithm here developed is shown to be a valid method for an aeronautical-piston-engine preliminary project design optimization. In particular the procedure is able to analyze quite a wide range of design solutions, rejecting the ones that cannot fulfill the feasibility design specifications. This optimization algorithm could increase the aeronautical-piston-engine development, speeding up the production rate and joining modern computation performances and technological awareness to the long lasting traditional design experiences.
Resumo:
OBJECTIVES The importance of phrenic nerve preservation during pneumonectomy remains controversial. We previously demonstrated that preservation of the phrenic nerve in the immediate postoperative period preserved lung function by 3-5% but little is known about its long-term effects. We, therefore, decided to investigate the effect of temporary ipsilateral cervical phrenic nerve block on dynamic lung volumes in mid- to long-term pneumonectomy patients. METHODS We investigated 14 patients after a median of 9 years post pneumonectomy (range: 1-15 years). Lung function testing (spirometry) and fluoroscopic and/or sonographic assessment of diaphragmatic motion on the pneumonectomy side were performed before and after ultrasonographic-guided ipsilateral cervical phrenic nerve block by infiltration with lidocaine. RESULTS Ipsilateral phrenic nerve block was successfully achieved in 12 patients (86%). In the remaining 2 patients, diaphragmatic motion was already paradoxical before the nerve block. We found no significant difference on dynamic lung function values (FEV1 'before' 1.39 ± 0.44 vs FEV1 'after' 1.38 ± 0.40; P = 0.81). CONCLUSIONS Induction of a temporary diaphragmatic palsy did not significantly influence dynamic lung volumes in mid- to long-term pneumonectomy patients, suggesting that preservation of the phrenic nerve is of greater importance in the immediate postoperative period after pneumonectomy.
Resumo:
En general, la distribución de una flota de vehículos que recorre rutas fijas no se realiza completamente en base a criterios objetivos, primando otros aspectos más difícilmente cuantificables. El análisis apropiado debería tener en consideración la variabilidad existente entre las diferentes rutas dentro de una misma ciudad para así determinar qué tecnología es la que mejor se adapta a las características de cada itinerario. Este trabajo presenta una metodología para optimizar la asignación de una flota de vehículos a sus rutas, consiguiendo reducir el consumo y las emisiones contaminantes. El método propuesto está organizado según el siguiente procedimiento: - Registro de las características cinemáticas de los vehículos que recorren un conjunto representativo de rutas. - Agrupamiento de las líneas en conglomerados de líneas similares empleando un algoritmo jerárquico que optimice el índice de semejanza entre rutas obtenido mediante contraste de hipótesis de las variables representativas. - Generación de un ciclo cinemático específico para cada conglomerado. - Tipificación de variables macroscópicas que faciliten la clasificación de las restantes líneas utilizando una red neuronal entrenada con la información recopilada en las rutas medidas. - Conocimiento de las características de la flota disponible. - Disponibilidad de un modelo que estime, según la tecnología del vehículo, el consumo y las emisiones asociados a las variables cinemáticas de los ciclos. - Desarrollo de un algoritmo de reasignación de vehículos que optimice una función objetivo dependiente de las emisiones. En el proceso de optimización de la flota se plantean dos escenarios de gran trascendencia en la evaluación ambiental, consistentes en minimizar la emisión de dióxido de carbono y su impacto como gas de efecto invernadero (GEI), y alternativamente, la producción de nitróxidos, por su influencia en la lluvia ácida y en la formación de ozono troposférico en núcleos urbanos. Además, en ambos supuestos se introducen en el problema restricciones adicionales para evitar que las emisiones de las restantes sustancias superen los valores estipulados según la organización de la flota actualmente realizada por el operador. La metodología ha sido aplicada en 160 líneas de autobús de la EMT de Madrid, conociéndose los datos cinemáticos de 25 rutas. Los resultados indican que, en ambos supuestos, es factible obtener una redistribución de la flota que consiga reducir significativamente la mayoría de las sustancias contaminantes, evitando que, en contraprestación, aumente la emisión de cualquier otro contaminante. ABSTRACT In general, the distribution of a fleet of vehicles that travel fixed routes is not usually implemented on the basis of objective criteria, thus prioritizing on other features that are more difficult to quantify. The appropriate analysis should consider the existing variability amongst the different routes within the city in order to determine which technology adapts better to the peculiarities of each itinerary. This study proposes a methodology to optimize the allocation of a fleet of vehicles to the routes in order to reduce fuel consumption and pollutant emissions. The suggested method is structured in accordance with the following procedure: - Recording of the kinematic characteristics of the vehicles that travel a representative set of routes. - Grouping of the lines in clusters of similar routes by utilizing a hierarchical algorithm that optimizes the similarity index between routes, which has been previously obtained by means of hypothesis contrast based on a set of representative variables. - Construction of a specific kinematic cycle to represent each cluster of routes. - Designation of macroscopic variables that allow the classification of the remaining lines using a neural network trained with the information gathered from a sample of routes. - Identification and comprehension of the operational characteristics of the existing fleet. - Availability of a model that evaluates, in accordance with the technology of the vehicle, the fuel consumption and the emissions related with the kinematic variables of the cycles. - Development of an algorithm for the relocation of the vehicle fleet by optimizing an objective function which relies on the values of the pollutant emissions. Two scenarios having great relevance in environmental evaluation are assessed during the optimization process of the fleet, these consisting in minimizing carbon dioxide emissions due to its impact as greenhouse gas (GHG), and alternatively, the production of nitroxides for their influence on acid rain and in the formation of tropospheric ozone in urban areas. Furthermore, additional restrictions are introduced in both assumptions in order to prevent that emission levels for the remaining substances exceed the stipulated values for the actual fleet organization implemented by the system operator. The methodology has been applied in 160 bus lines of the EMT of Madrid, for which kinematic information is known for a sample consisting of 25 routes. The results show that, in both circumstances, it is feasible to obtain a redistribution of the fleet that significantly reduces the emissions for the majority of the pollutant substances, while preventing an alternative increase in the emission level of any other contaminant.
Resumo:
Poster presented in the 11th Mediterranean Congress of Chemical Engineering, Barcelona, October 21-24, 2008.
Resumo:
Mathematical programming can be used for the optimal design of shell-and-tube heat exchangers (STHEs). This paper proposes a mixed integer non-linear programming (MINLP) model for the design of STHEs, following rigorously the standards of the Tubular Exchanger Manufacturers Association (TEMA). Bell–Delaware Method is used for the shell-side calculations. This approach produces a large and non-convex model that cannot be solved to global optimality with the current state of the art solvers. Notwithstanding, it is proposed to perform a sequential optimization approach of partial objective targets through the division of the problem into sets of related equations that are easier to solve. For each one of these problems a heuristic objective function is selected based on the physical behavior of the problem. The global optimal solution of the original problem cannot be ensured even in the case in which each of the sub-problems is solved to global optimality, but at least a very good solution is always guaranteed. Three cases extracted from the literature were studied. The results showed that in all cases the values obtained using the proposed MINLP model containing multiple objective functions improved the values presented in the literature.
Resumo:
In this paper we examine multi-objective linear programming problems in the face of data uncertainty both in the objective function and the constraints. First, we derive a formula for the radius of robust feasibility guaranteeing constraint feasibility for all possible scenarios within a specified uncertainty set under affine data parametrization. We then present numerically tractable optimality conditions for minmax robust weakly efficient solutions, i.e., the weakly efficient solutions of the robust counterpart. We also consider highly robust weakly efficient solutions, i.e., robust feasible solutions which are weakly efficient for any possible instance of the objective matrix within a specified uncertainty set, providing lower bounds for the radius of highly robust efficiency guaranteeing the existence of this type of solutions under affine and rank-1 objective data uncertainty. Finally, we provide numerically tractable optimality conditions for highly robust weakly efficient solutions.
Resumo:
The Gauss-Marquardt-Levenberg (GML) method of computer-based parameter estimation, in common with other gradient-based approaches, suffers from the drawback that it may become trapped in local objective function minima, and thus report optimized parameter values that are not, in fact, optimized at all. This can seriously degrade its utility in the calibration of watershed models where local optima abound. Nevertheless, the method also has advantages, chief among these being its model-run efficiency, and its ability to report useful information on parameter sensitivities and covariances as a by-product of its use. It is also easily adapted to maintain this efficiency in the face of potential numerical problems (that adversely affect all parameter estimation methodologies) caused by parameter insensitivity and/or parameter correlation. The present paper presents two algorithmic enhancements to the GML method that retain its strengths, but which overcome its weaknesses in the face of local optima. Using the first of these methods an intelligent search for better parameter sets is conducted in parameter subspaces of decreasing dimensionality when progress of the parameter estimation process is slowed either by numerical instability incurred through problem ill-posedness, or when a local objective function minimum is encountered. The second methodology minimizes the chance of successive GML parameter estimation runs finding the same objective function minimum by starting successive runs at points that are maximally removed from previous parameter trajectories. As well as enhancing the ability of a GML-based method to find the global objective function minimum, the latter technique can also be used to find the locations of many non-global optima (should they exist) in parameter space. This can provide a useful means of inquiring into the well-posedness of a parameter estimation problem, and for detecting the presence of bimodal parameter and predictive probability distributions. The new methodologies are demonstrated by calibrating a Hydrological Simulation Program-FORTRAN (HSPF) model against a time series of daily flows. Comparison with the SCE-UA method in this calibration context demonstrates a high level of comparative model run efficiency for the new method. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Group decision making is the study of identifying and selecting alternatives based on the values and preferences of the decision maker. Making a decision implies that there are several alternative choices to be considered. This paper uses the concept of Data Envelopment Analysis to introduce a new mathematical method for selecting the best alternative in a group decision making environment. The introduced model is a multi-objective function which is converted into a multi-objective linear programming model from which the optimal solution is obtained. A numerical example shows how the new model can be applied to rank the alternatives or to choose a subset of the most promising alternatives.
Resumo:
Linear programming (LP) is the most widely used optimization technique for solving real-life problems because of its simplicity and efficiency. Although conventional LP models require precise data, managers and decision makers dealing with real-world optimization problems often do not have access to exact values. Fuzzy sets have been used in the fuzzy LP (FLP) problems to deal with the imprecise data in the decision variables, objective function and/or the constraints. The imprecisions in the FLP problems could be related to (1) the decision variables; (2) the coefficients of the decision variables in the objective function; (3) the coefficients of the decision variables in the constraints; (4) the right-hand-side of the constraints; or (5) all of these parameters. In this paper, we develop a new stepwise FLP model where fuzzy numbers are considered for the coefficients of the decision variables in the objective function, the coefficients of the decision variables in the constraints and the right-hand-side of the constraints. In the first step, we use the possibility and necessity relations for fuzzy constraints without considering the fuzzy objective function. In the subsequent step, we extend our method to the fuzzy objective function. We use two numerical examples from the FLP literature for comparison purposes and to demonstrate the applicability of the proposed method and the computational efficiency of the procedures and algorithms. © 2013-IOS Press and the authors. All rights reserved.
Resumo:
2000 Mathematics Subject Classification: 90C25, 68W10, 49M37.
Resumo:
Freeway systems are becoming more congested each day. One contribution to freeway traffic congestion comprises platoons of on-ramp traffic merging into freeway mainlines. As a relatively low-cost countermeasure to the problem, ramp meters are being deployed in both directions of an 11-mile section of I-95 in Miami-Dade County, Florida. The local Fuzzy Logic (FL) ramp metering algorithm implemented in Seattle, Washington, has been selected for deployment. The FL ramp metering algorithm is powered by the Fuzzy Logic Controller (FLC). The FLC depends on a series of parameters that can significantly alter the behavior of the controller, thus affecting the performance of ramp meters. However, the most suitable values for these parameters are often difficult to determine, as they vary with current traffic conditions. Thus, for optimum performance, the parameter values must be fine-tuned. This research presents a new method of fine tuning the FLC parameters using Particle Swarm Optimization (PSO). PSO attempts to optimize several important parameters of the FLC. The objective function of the optimization model incorporates the METANET macroscopic traffic flow model to minimize delay time, subject to the constraints of reasonable ranges of ramp metering rates and FLC parameters. To further improve the performance, a short-term traffic forecasting module using a discrete Kalman filter was incorporated to predict the downstream freeway mainline occupancy. This helps to detect the presence of downstream bottlenecks. The CORSIM microscopic simulation model was selected as the platform to evaluate the performance of the proposed PSO tuning strategy. The ramp-metering algorithm incorporating the tuning strategy was implemented using CORSIM's run-time extension (RTE) and was tested on the aforementioned I-95 corridor. The performance of the FLC with PSO tuning was compared with the performance of the existing FLC without PSO tuning. The results show that the FLC with PSO tuning outperforms the existing FL metering, fixed-time metering, and existing conditions without metering in terms of total travel time savings, average speed, and system-wide throughput.