893 resultados para OVERHAUSER EFFECT EXPERIMENTS
Resumo:
Three tripeptides containing a central Z-dehydrophenylalanine residue (Δz-Phe), Boc-L-Phe-Δz-Phe-X-OMe (X = L-Val 1, L-Leu 2 and X = L-Ala 3) have been synthesized and their solution conformations investigated by 270 MHz 1H NMR spectroscopy. In all three peptides, conformations involving the X residue NH in an intramolecular hydrogen bond were favoured in CDCl3 solutions. Studies of the nuclear Overhauser effect (NOE) provided support for a Type II β turn conformation in these peptides with Phe and Δz-Phe occupying the i + 1 and i + 2 positions, respectively. Significantly different conformations lacking any intramolecular hydrogen bonds were observed for peptide 1 in (CD3)2SO. NOE results were consistent with a significant population of molecules having semi-extended conformations (ø > 100°) at the Δz-Phe residue.
Resumo:
The nuclear Overhauser effect equations are solved analytically for a homonuclear group of spins whose sites are periodically arranged, including the special cases where the spins lie at the vertices of a regular polygon and on a one-dimensional lattice. t is shown that, for long correlation times, the equations governing magnetization transfer resemble a diffusion equation. Furthermore the deviation from exact diffusion is quantitatively related to the molecular tumbling correlation time. Equations are derived for the range of magnetization travel subsequent to the perturbation of a single spin in a lattice for both the case of strictly dipolar relaxation and the more general situation where additional T1 mechanisms may be active. The theory given places no restrictions on the delay (or mixing) times, and it includes all the spins in the system. Simulations are presented to confirm the theory.
Resumo:
The dynamics of three liquid crystals, 4'(pentyloxy)-4-biphenylcarbonitrile (5-OCB), 4'-pentyl-4-biphenylcarbonitrile (5-CB), and 1-isothiocyanato-(4-propylcyclohexyl)benzene (3-CHBT), are investigated from very short time (similar to1 ps) to very long time (>100 ns) as a function of temperature using optical heterodyne detected optical Kerr effect experiments. For all three liquid crystals, the data decay exponentially only on the longest time scale (> several ns). The temperature dependence of the long time scale exponential decays is described well by the Landau-de Gennes theory of the randomization of pseudonematic domains that exist in the isotropic phase of liquid crystals near the isotropic to nematic phase transition. At short time, all three liquid crystals display power law decays. Over the full range of times, the data for all three liquid crystals are fit with a model function that contains a short time power law. The power law exponents for the three liquid crystals range between 0.63 and 0.76, and the power law exponents are temperature independent over a wide range of temperatures. Integration of the fitting function gives the empirical polarizability-polarizability (orientational) correlation function. A preliminary theoretical treatment of collective motions yields a correlation function that indicates that the data can decay as a power law at short times. The power law component of the decay reflects intradomain dynamics. (C) 2002 American Institute of Physics.
Resumo:
Stable aqueous dispersions of atomically thin layered MoS2 nanosheets have been obtained by sonication in the presence of ionic surfactants. The dispersions are stabilized by electrostatic repulsion between the sheets, and we show that the sign of the charge on the MoS2 nanosheets, either positive or negative, can be can be controlled by the choice of the surfactant. Using techniques from solution NMR, we show that the surfactant chains are weakly bound to the MoS2 sheets and undergo rapid exchange with free surfactant chains present in the dispersion. In situ nuclear Overhauser effect spectroscopic measurements provide direct evidence that the surfactant chains lie flat, arranged randomly on the basal plane of the MoS2 nanosheets with their charged headgroup exposed. These results provide a chemical perspective for understanding the stability of these inorganic nanosheets in aqueous dispersions and the origin of the charge on the sheets.
Resumo:
利用吉林大栗子铁矿纯菱铁矿样品,系统测量了菱铁矿在空气环境的的磁化特征,揭示出其饱和曙剩磁(SIRM)、剩磁矫顽力(HCR)和居里温度(TC)随加热温度升高而秘珠系列变化,菱放氧化中准稳定态性矿物磁赤铁矿是中间产物之一,并且具有较高的热稳定性,X射线衍射和穆斯堡尔效应等分析结果证实了岩石磁学研究所揭示的菱铁矿氧化中磁性矿物转变过程,菱铁矿氧化过程中结晶结构的转变可能会影响其氧化产物的磁性特性。
Resumo:
Three kinds of high-performance polyimides 1 (poly(ketone-imide) PKI), 2 (poly(ether-imide) PEI) and 3 (poly(oxy-imide) POI) were studied using nuclear magnetic resonance (NMR). The NMR spectra of the polyimides were assigned according to the comprehensive consideration of the substitution effect of different substituting groups, viz. distortionless enhancement by polarization transfer (DEPT), no nuclear Overhauser effect (NNE), analysis of relaxation time, and two-dimensional correlated spectroscopy (COSY) techniques. The structural units of these three polyimides were determined. Carbon-13 and proton relaxation times for PEI and PKI were interpreted in terms of segmental motion characterized by the sharp cutoff model of Jones and Stockmayer (JS model) and anisotropic group rotation such as phenyl group rotation and methyl group rotation. Correlation times for the main-chain motion are in the tens of picosecond range which indicates the high flexibility of polyimide chains. Correlation times for phenyl group and methyl group rotations are more than 1 order of magnitude lower and approximately 1 order of magnitude higher than that of the main chain, respectively.
Resumo:
The dyes Nile Blue (C I Basic Blue 12) and Thionine (C I 52000) were examined in both ionic and neutral forms in different solvents using NMR and UV-visible spectroscopy to firmly establish the structures of the molecules and to assess the nature and extent of their aggregation H-1 and C-13 NMR assignments and chemical shift data were used together with nuclear Overhauser effect information to propose a self-assembly structure These data were supplemented with variable temperature dilution and diffusion-based experimental results using H-1 NMR spectroscopy thereby enabling extended aggregate structures to be assessed in terms of the relative strength of self-association and the extent to which extended aggregates could form (C) 2010 Elsevier Ltd All rights reserved
Resumo:
Inorganica Chimica Acta 356 (2003) 215-221
Resumo:
Soon after its discovery in the 1950s, NMR had become an indispensable tool fr chemists. In the 1970s and 1980s, the power of the technique was extended from one dimension to two and even three dimensions, opening up exciting applkications in both chemistry and biochemistry. the success of one dimensional. high-resolution NMR stems from the unique insights that it can provide about molecular structure. The chemical shift of a nucleus gives invaluable information abut the chemical environment in which that nucleus is located, Coupling interactions between hydorgen nuclei, as revealed by characteristic splitting patterns inthe 1H-NMR spectrum, provide informaton about the loaction of one group of hydorgen atoms relative to others inthe molecule. And the nuclearf Overhauser effect (nOe) can shed light on molecular stereochemistry.
Resumo:
Communiols E-H (1-4), four new polyketide-derived natural products containing furanocyclopentane, furanocyclopentene, cyclopentene, or γ-lactone moieties, have been isolated from two geographically distinct isolates of the coprophilous fungus Podospora communis. The structures of these compounds were determined by analysis of NMR and MS data. © 2005 American Chemical Society and American Society of Pharmacognosy.
Resumo:
Recent research in cognitive sciences shows a growing interest in spatial-numerical associations. The horizontal SNARC (spatial-numerical association of response codes) effect is defined by faster left-sided responses to small numbers and faster right-sided responses to large numbers in a parity judgment task. In this study we investigated whether there is also a SNARC effect for upper and lower responses. The grounded cognition approach suggests that the universal experience of "more is up" serves as a robust frame of reference for vertical number representation. In line with this view, lower hand responses to small numbers were faster than to large numbers (Experiment 1). Interestingly, the vertical SNARC effect reversed when the lower responses were given by foot instead of the hand (Experiments 2, 3, and 4). We found faster upper (hand) responses to small numbers and faster lower (foot) responses to large numbers. Additional experiments showed that spatial factors cannot account for the reversal of the vertical SNARC effect (Experiments 4 and 5). Our results question the view of "more is up" as a robust frame of reference for spatial-numerical associations. We discuss our results within a hierarchical framework of numerical cognition and point to a possible link between effectors and number representation.
Resumo:
A large superfamily of transmembrane receptors control cellular responses to diverse extracellular signals by catalyzing activation of specific types of heterotrimeric GTP-binding proteins. How these receptors recognize and promote nucleotide exchange on G protein α subunits to initiate signal amplification is unknown. The three-dimensional structure of the transducin (Gt) α subunit C-terminal undecapeptide Gtα(340–350) IKENLKDCGLF was determined by transferred nuclear Overhauser effect spectroscopy while it was bound to photoexcited rhodopsin. Light activation of rhodopsin causes a dramatic shift from a disordered conformation of Gtα(340–350) to a binding motif with a helical turn followed by an open reverse turn centered at Gly-348, a helix-terminating C capping motif of an αL type. Docking of the NMR structure to the GDP-bound x-ray structure of Gt reveals that photoexcited rhodopsin promotes the formation of a continuous helix over residues 325–346 terminated by the C-terminal helical cap with a unique cluster of crucial hydrophobic side chains. A molecular mechanism by which activated receptors can control G proteins through reversible conformational changes at the receptor–G protein interface is demonstrated.
Resumo:
Duocarmycin A (Duo) normally alkylates adenine N3 at the 3′ end of A+T-rich sequences in DNA. The efficient adenine alkylation by Duo is achieved by its monomeric binding to the DNA minor groove. The addition of another minor groove binder, distamycin A (Dist), dramatically modulates the site of DNA alkylation by Duo, and the alkylation switches preferentially to G residues in G+C-rich sequences. HPLC product analysis using oligonucleotides revealed a highly efficient G–N3 alkylation via the cooperative binding of a heterodimer between Duo and Dist to the minor groove. The three-dimensional structure of the ternary alkylated complex of Duo/Dist/d(CAGGTGGT)·d(ACCACCTG) has been determined by nuclear Overhauser effect (NOE)-restrained refinement using 750 MHz two-dimensional NOE spectroscopy data. The refined NMR structure fully explains the sequence requirement of such modulated alkylations. This is the first demonstration of Duo DNA alkylation through cooperative binding with another structurally different natural product, and it suggests a promising new way to alter or modify the DNA alkylation selectivity in a predictable manner.
Resumo:
The prion diseases seem to be caused by a conformational change of the prion protein (PrP) from the benign cellular form PrPC to the infectious scrapie form PrPSc; thus, detailed information about PrP structure may provide essential insights into the mechanism by which these diseases develop. In this study, the secondary structure of the recombinant Syrian hamster PrP of residues 29–231 [PrP(29–231)] is investigated by multidimensional heteronuclear NMR. Chemical shift index analysis and nuclear Overhauser effect data show that PrP(29–231) contains three helices and possibly one short β-strand. Most striking is the random-coil nature of chemical shifts for residues 30–124 in the full-length PrP. Although the secondary structure elements are similar to those found in mouse PrP fragment PrP(121–231), the secondary structure boundaries of PrP(29–231) are different from those in mouse PrP(121–231) but similar to those found in the structure of Syrian hamster PrP(90–231). Comparison of resonance assignments of PrP(29–231) and PrP(90–231) indicates that there may be transient interactions between the additional residues and the structured core. Backbone dynamics studies done by using the heteronuclear [1H]-15N nuclear Overhauser effect indicate that almost half of PrP(29–231), residues 29–124, is highly flexible. This plastic region could feature in the conversion of PrPC to PrPSc by template-assisted formation of β-structure.
Resumo:
The helicity in water has been determined for several series of alanine-rich peptides that contain single lysine residues and that are N-terminally linked to a helix-inducing and reporting template termed Ac-Hel1. The helix-propagating constant for alanine (sAla value) that best fits the properties of these peptides lies in the range of 1.01-1.02, close to the value reported by Scheraga and coworkers [Wojcik, J., Altmann, K.-H. & Scheraga, H.A. (1990) Biopolymers 30, 121-134], but significantly lower than the value assigned by Baldwin and coworkers [Chakrabartty, A., Kortemme, T. & Baldwin, R.L. (1994) Protein Sci. 3,843-852]. From a study of conjugates Ac-Hel1-Ala(n)-Lys-Ala(m)-NH2 and analogs in which the methylene portion of the lysine side chain is truncated, we find that the unusual helical stability of Ala(n)Lys peptides is controlled primarily by interactions of the lysine side chain with the helix barrel, and only passively by the alanine matrix. Using 1H NMR spectroscopy, we observe nuclear Overhauser effect crosspeaks consistent with proton-proton contacts expected for these interactions.