953 resultados para ORTHOPEDIC IMPLANTS
Resumo:
Osteal macrophages (OsteoMacs) are a special subtype of macrophage residing in bony tissues. Interesting findings from basic research have pointed to their vast and substantial roles in bone biology by demonstrating their key function in bone formation and remodeling. Despite these essential findings, much less information is available concerning their response to a variety of biomaterials used for bone regeneration with the majority of investigation primarily focused on their role during the foreign body reaction. With respect to biomaterials, it is well known that cells derived from the monocyte/macrophage lineage are one of the first cell types in contact with implanted biomaterials. Here they demonstrate extremely plastic phenotypes with the ability to differentiate towards classical M1 or M2 macrophages, or subsequently fuse into osteoclasts or multinucleated giant cells (MNGCs). These MNGCs have previously been characterized as foreign body giant cells and associated with biomaterial rejection, however more recently their phenotypes have been implicated with wound healing and tissue regeneration by studies demonstrating their expression of key M2 markers around biomaterials. With such contrasting hypotheses, it becomes essential to better understand their roles to improve the development of osteo-compatible and osteo-promotive biomaterials. This review article expresses the necessity to further study OsteoMacs and MNGCs to understand their function in bone biomaterial tissue integration including dental/orthopedic implants and bone grafting materials.
Resumo:
Durante el desarrollo de un niño pueden ocurrir diversas anomalías y distorsiones en el crecimiento de los huesos que resultan en distintos problemas. Independientemente de las razones por las que ocurren, si son detectadas y tratadas con tiempo sus secuelas pueden ser minimizadas o eliminadas. Este trabajo continúa el proyecto integrador de ingeniería mecánica del ingeniero Matías Korten. En ese trabajo se realizaron ensayos termomecánicos a alambres de NiTi para caracterizar las fuerzas desarrolladas y la influencia de diferentes parámetros geométricos y físicos en las mismas. El Dr. J. Groiso propone la fabricación de un dispositivo pseudoelástico y biocompatible de NiTi para corregir deformaciones angulares en huesos. En este trabajo, se buscó caracterizar nuevamente el material NiTi, validar los resultados obtenidos en ese trabajo y diseñar un dispositivo que permita la caracterización del material de forma más confiable. Se desarrolló un modelo computacional de un hueso en 3D que permite obtener el campo de tensiones sobre la placa de crecimiento al aplicar una fuerza superficial sobre los tornillos. Se analizaron los resultados con distintas formas de aplicación de la fuerza, la zona afectada por la prótesis al cambiar la posición de los tornillos y se hizo un análisis de sensibilidad en el rango (según bibliografía) del módulo de elasticidad de la placa de crecimiento. Se concluye que la aplicación de un dispositivo de NiTi puede generar las tensiones necesarias para impulsar el crecimiento del hueso en la dirección correcta.
Resumo:
Durante el desarrollo de un niño pueden ocurrir diversas anomalías y distorsiones en el crecimiento de los huesos que resultan en distintos problemas. Independientemente de las razones por las que ocurren, si son detectadas y tratadas con tiempo sus secuelas pueden ser minimizadas o eliminadas. Este trabajo continúa el proyecto integrador de ingeniería mecánica del ingeniero Matías Korten. En ese trabajo se realizaron ensayos termomecánicos a alambres de NiTi para caracterizar las fuerzas desarrolladas y la influencia de diferentes parámetros geométricos y físicos en las mismas. El Dr. J. Groiso propone la fabricación de un dispositivo pseudoelástico y biocompatible de NiTi para corregir deformaciones angulares en huesos. En este trabajo, se buscó caracterizar nuevamente el material NiTi, validar los resultados obtenidos en ese trabajo y diseñar un dispositivo que permita la caracterización del material de forma más confiable. Se desarrolló un modelo computacional de un hueso en 3D que permite obtener el campo de tensiones sobre la placa de crecimiento al aplicar una fuerza superficial sobre los tornillos. Se analizaron los resultados con distintas formas de aplicación de la fuerza, la zona afectada por la prótesis al cambiar la posición de los tornillos y se hizo un análisis de sensibilidad en el rango (según bibliografía) del módulo de elasticidad de la placa de crecimiento. Se concluye que la aplicación de un dispositivo de NiTi puede generar las tensiones necesarias para impulsar el crecimiento del hueso en la dirección correcta.
Resumo:
An ideal biomaterial for dental implants must have very high biocompatibility, which means that such materials should not provoke any serious adverse tissue response. Also, used metal alloys must have high fatigue resistance due the masticatory force and good corrosion resistance. These properties are rendered by using alpha and beta stabilizers, such as Al, V, Ni, Fe, Cr, Cu, Zn. Commercially pure titanium (TiCP) is used often for dental and orthopedic implants manufacturing. However, sometimes other alloys are employed and consequently it is essential to research the chemical elements present in those alloys that could bring prejudice for the health. Present work investigated TiCP metal alloys used for dental implant manufacturing and evaluated the presence of stabilizing elements within existing limits and standards for such materials. For alloy characterization and identification of stabilizing elements it was used EDXRF technique. This method allows to perform qualitative and quantitative analysis of the materials using the spectra of the characteristic X-rays emitted by the elements present in the metal samples. The experimental setup was based on two X- rays tubes (AMPTEK Mini X model with Ag and Au targets), a X-123SDD detector (AMPTEK) and a 0.5mm Cu collimator, developed due to the sample characteristics. The other experimental setup used as a complementary technique is composed of an X-ray tube with a Mo target, collimator 0.65mm and XFlash (SDD) detector - ARTAX 200 (BRUKER). Other method for elemental characterization by energy dispersive spectroscopy (EDS) applied in present work was based on Scanning Electron Microscopy (SEM) EVO® (Zeeis). This method also was used to evaluate the surface microstructure of the sample. The percentual of Ti obtained in the elementary characterization was among 93.35 ± 0.17% and 95.34 ± 0.19 %. These values are considered below the reference limit of 98.635% to 99.5% for TiCP, established by Association of metals centric materials engineers and scientists Society (ASM). The presence of elements Al and V in all samples also contributed to underpin the fact that are not TiCP implants. The values for Al vary between 6.3 ± 1.3% and 3.7 ± 2.0% and for V, between 0.26 ± 0.09% and 0.112 ± 0.048%. According to the American Society for Testing and Materials (ASTM), these elements should not be present in TiCP and in accordance with the National Institute of Standards and Technology (NIST), the presence of Al should be <0.01% and V should be of 0.009 ± 0.001%. Obtained results showed that implant materials are not exactly TiCP but, were manufactured using Ti-Al-V alloy, which contained Fe, Ni, Cu and Zn. The quantitative analysis and elementary characterization of experimental results shows that the best accuracy and precision were reached with X-Ray tube with Au target and collimator of 0.5 mm. Use of technique of EDS confirmed the results of EDXRF for Ti-Al-V alloy. Evaluating the surface microstructure by SEM of the implants, it was possible to infer that ten of the thirteen studied samples are contemporaneous, rough surface and three with machined surface.
Resumo:
This paper aims to review biomaterials used in manufacturing bone plates including advances in recent years and prospect in the future. It has found among all biomaterials, currently titanium and stainless steel alloys are the most common in production of bone plates. Other biomaterials such as Mg alloys, Ta alloys, SMAs, carbon fiber composites and bioceramics are potentially suitable for bone plates because of their advantages in biocompatibility, bioactivity and biodegradability. However, today either they are not used in bone plates or have limited applications in only some flexible small-size implants. This problem is mainly related to their poor mechanical properties. Additionally, production processes play an effective role. Therefore, in the future, further studies should be conducted to solve these problems and make them feasible for heavy-duty bone plates.
Resumo:
Biofilms are a complex group of microbial cells that adhere to the exopolysaccharide matrix present on the surface of medical devices. Biofilm-associated infections in the medical devices pose a serious problem to the public health and adversely affect the function of the device. Medical implants used in oral and orthopedic surgery are fabricated using alloys such as stainless steel and titanium. The biological behavior, such as osseointegration and its antibacterial activity, essentially depends on both the chemical composition and the morphology of the surface of the device. Surface treatment of medical implants by various physical and chemical techniques are attempted in order to improve their surface properties so as to facilitate bio-integration and prevent bacterial adhesion. The potential source of infection of the surrounding tissue and antimicrobial strategies are from bacteria adherent to or in a biofilm on the implant which should prevent both biofilm formation and tissue colonization. This article provides an overview of bacterial biofilm formation and methods adopted for the inhibition of bacterial adhesion on medical implants
Resumo:
Crystallographic texture is perceived to play an important role in controlling material properties. However, the influence of texture in modulating the properties of biomedical materials has not been well investigated. In this work, commercially pure titanium (cp-Ti) was processed through six different routes to generate a variety of textures. The effect of texture on mechanical properties, corrosion behavior, cell proliferation and osteogenesis was characterized for potential use in orthopedic applications. The presence of closely packed, low-energy crystallographic planes at the material surface was influenced by the volume fraction of the components in the overall texture, thereby influencing surface energy and corrosion behavior. Texture modulated osteoblast proliferation through variations in surface water wettability. It also affected mineralization by possibly influencing the coherency between the substrate and calcium phosphate deposits. This study demonstrates that crystallographic texture can be an important tool in improving the properties of biomaterials to achieve the enhanced performance of biomedical implants.
Resumo:
Durch die von Rapid Prototyping gebotenen Möglichkeiten können computergestützte 3D Operationsplanungen präzise in der Operation umgesetzt werden. An der Universitätsklinik Balgrist wurden in den letzten 3 Jahren nahezu 100 Patienten erfolgreich behandelt, deren Operation in 3D geplant und mit patienten-spezifischen Schablonen umgesetzt wurde. Wir beschreiben die Genauigkeit dieser Methode und berichten über die hierbei gesammelten Erfahrungen. Aufgrund der Flexibilität der Rapid Prototyping Technologie, gibt es nicht immer nur einen Weg wie eine 3D geplante Operation umgesetzt werden kann. Wir zeigen daher anhand von Fallbeispielen unterschiedliche Strategien auf und beschreiben deren Vor- und Nachteile. Ausserdem präsentieren wir die Weiterentwicklung der Methode zur Anwendung an kleinerer Anatomie wie Knochen des Handgelenkes oder der Finger.
Resumo:
In radiotherapy planning, computed tomography (CT) images are used to quantify the electron density of tissues and provide spatial anatomical information. Treatment planning systems use these data to calculate the expected spatial distribution of absorbed dose in a patient. CT imaging is complicated by the presence of metal implants which cause increased image noise, produce artifacts throughout the image and can exceed the available range of CT number values within the implant, perturbing electron density estimates in the image. Furthermore, current dose calculation algorithms do not accurately model radiation transport at metal-tissue interfaces. Combined, these issues adversely affect the accuracy of dose calculations in the vicinity of metal implants. As the number of patients with orthopedic and dental implants grows, so does the need to deliver safe and effective radiotherapy treatments in the presence of implants. The Medical Physics group at the Cancer Centre of Southeastern Ontario and Queen's University has developed a Cobalt-60 CT system that is relatively insensitive to metal artifacts due to the high energy, nearly monoenergetic Cobalt-60 photon beam. Kilovoltage CT (kVCT) images, including images corrected using a commercial metal artifact reduction tool, were compared to Cobalt-60 CT images throughout the treatment planning process, from initial imaging through to dose calculation. An effective metal artifact reduction algorithm was also implemented for the Cobalt-60 CT system. Electron density maps derived from the same kVCT and Cobalt-60 CT images indicated the impact of image artifacts on estimates of photon attenuation for treatment planning applications. Measurements showed that truncation of CT number data in kVCT images produced significant mischaracterization of the electron density of metals. Dose measurements downstream of metal inserts in a water phantom were compared to dose data calculated using CT images from kVCT and Cobalt-60 systems with and without artifact correction. The superior accuracy of electron density data derived from Cobalt-60 images compared to kVCT images produced calculated dose with far better agreement with measured results. These results indicated that dose calculation errors from metal image artifacts are primarily due to misrepresentation of electron density within metals rather than artifacts surrounding the implants.
Resumo:
Although many different materials, techniques and methods, including artificial or engineered bone substitutes, have been used to repair various bone defects, the restoration of critical-sized bone defects caused by trauma, surgery or congenital malformation is still a great challenge to orthopedic surgeons. One important fact that has been neglected in the pursuit of resolutions for large bone defect healing is that most physiological bone defect healing needs the periosteum and stripping off the periosteum may result in non-union or non-healed bone defects. Periosteum plays very important roles not only in bone development but also in bone defect healing. The purpose of this project was to construct a functional periosteum in vitro using a single stem cell source and then test its ability to aid the repair of critical-sized bone defect in animal models. This project was designed with three separate but closely-linked parts which in the end led to four independent papers. The first part of this study investigated the structural and cellular features in periostea from diaphyseal and metaphyseal bone surfaces in rats of different ages or with osteoporosis. Histological and immunohistological methods were used in this part of the study. Results revealed that the structure and cell populations in periosteum are both age-related and site-specific. The diaphyseal periosteum showed age-related degeneration, whereas the metaphyseal periosteum is more destructive in older aged rats. The periosteum from osteoporotic bones differs from normal bones both in terms of structure and cell populations. This is especially evident in the cambial layer of the metaphyseal area. Bone resorption appears to be more active in the periosteum from osteoporotic bones, whereas bone formation activity is comparable between the osteoporotic and normal bone. The dysregulation of bone resorption and formation in the periosteum may also be the effect of the interaction between various neural pathways and the cell populations residing within it. One of the most important aspects in periosteum engineering is how to introduce new blood vessels into the engineered periosteum to help form vascularized bone tissues in bone defect areas. The second part of this study was designed to investigate the possibility of differentiating bone marrow stromal cells (BMSCs) into the endothelial cells and using them to construct vascularized periosteum. The endothelial cell differentiation of BMSCs was induced in pro-angiogenic media under both normoxia and CoCl2 (hypoxia-mimicking agent)-induced hypoxia conditions. The VEGF/PEDF expression pattern, endothelial cell specific marker expression, in vitro and in vivo vascularization ability of BMSCs cultured in different situations were assessed. Results revealed that BMSCs most likely cannot be differentiated into endothelial cells through the application of pro-angiogenic growth factors or by culturing under CoCl2-induced hypoxic conditions. However, they may be involved in angiogenesis as regulators under both normoxia and hypoxia conditions. Two major angiogenesis-related growth factors, VEGF (pro-angiogenic) and PEDF (anti-angiogenic) were found to have altered their expressions in accordance with the extracellular environment. BMSCs treated with the hypoxia-mimicking agent CoCl2 expressed more VEGF and less PEDF and enhanced the vascularization of subcutaneous implants in vivo. Based on the findings of the second part, the CoCl2 pre-treated BMSCs were used to construct periosteum, and the in vivo vascularization and osteogenesis of the constructed periosteum were assessed in the third part of this project. The findings of the third part revealed that BMSCs pre-treated with CoCl2 could enhance both ectopic and orthotopic osteogenesis of BMSCs-derived osteoblasts and vascularization at the early osteogenic stage, and the endothelial cells (HUVECs), which were used as positive control, were only capable of promoting osteogenesis after four-weeks. The subcutaneous area of the mouse is most likely inappropriate for assessing new bone formation on collagen scaffolds. This study demonstrated the potential application of CoCl2 pre-treated BMSCs in the tissue engineering not only for periosteum but also bone or other vascularized tissues. In summary, the structure and cell populations in periosteum are age-related, site-specific and closely linked with bone health status. BMSCs as a stem cell source for periosteum engineering are not endothelial cell progenitors but regulators, and CoCl2-treated BMSCs expressed more VEGF and less PEDF. These CoCl2-treated BMSCs enhanced both vascularization and osteogenesis in constructed periosteum transplanted in vivo.
Resumo:
The reconstruction of extended maxillary and mandibular defects with prefabricated free flaps is a two stage procedure, that allows immediate function with implant supported dentures. The appropriate delay between prefabrication and reconstruction depends on the interfacial strength of the bone–implant surface. The purpose of this animal study was to evaluate the removal torque of unloaded titanium implants in the fibula, the scapula and the iliac crest. Ninety implants with a sandblasted and acid-etched (SLA) surface were tested after healing periods of 3, 6, and 12 weeks, respectively. Removal torque values (RTV) were collected using a computerized counterclockwise torque driver. The bicortical anchored 8 mm implants in the fibula revealed values of 63.73 Ncm, 91.50 Ncm, and 101.83 Ncm at 3, 6, and 12 weeks, respectively. The monocortical anchorage in the iliac crest showed values of 71.40 Ncm, 63.14 Ncm, and 61.59 Ncm with 12 mm implants at the corresponding times. The monocortical anchorage in the scapula demonstrated mean RTV of 62.28 Ncm, 97.63 Ncm, and 99.7 Ncm with 12 mm implants at 3, 6, and 12 weeks, respectively. The study showed an increase of removal torque with increasing healing time. The interfacial strength for bicortical anchored 8 mm implants in the fibula was comparable to monocortical anchored 12 mm implants in the iliac crest and the scapula at the corresponding times. The resistance to shear seemed to be determined by the type of anchorage (monocortical vs. bicortical) and the length of the implant with greater amount of bone–implant interface.
Resumo:
One of the main causes of above knee or transfemoral amputation (TFA) in the developed world is trauma to the limb. The number of people undergoing TFA due to limb trauma, particularly due to war injuries, has been increasing. Typically the trauma amputee population, including war-related amputees, are otherwise healthy, active and desire to return to employment and their usual lifestyle. Consequently there is a growing need to restore long-term mobility and limb function to this population. Traditionally transfemoral amputees are provided with an artificial or prosthetic leg that consists of a fabricated socket, knee joint mechanism and a prosthetic foot. Amputees have reported several problems related to the socket of their prosthetic limb. These include pain in the residual limb, poor socket fit, discomfort and poor mobility. Removing the socket from the prosthetic limb could eliminate or reduce these problems. A solution to this is the direct attachment of the prosthesis to the residual bone (femur) inside the residual limb. This technique has been used on a small population of transfemoral amputees since 1990. A threaded titanium implant is screwed in to the shaft of the femur and a second component connects between the implant and the prosthesis. A period of time is required to allow the implant to become fully attached to the bone, called osseointegration (OI), and be able to withstand applied load; then the prosthesis can be attached. The advantages of transfemoral osseointegration (TFOI) over conventional prosthetic sockets include better hip mobility, sitting comfort and prosthetic retention and fewer skin problems on the residual limb. However, due to the length of time required for OI to progress and to complete the rehabilitation exercises, it can take up to twelve months after implant insertion for an amputee to be able to load bear and to walk unaided. The long rehabilitation time is a significant disadvantage of TFOI and may be impeding the wider adoption of the technique. There is a need for a non-invasive method of assessing the degree of osseointegration between the bone and the implant. If such a method was capable of determining the progression of TFOI and assessing when the implant was able to withstand physiological load it could reduce the overall rehabilitation time. Vibration analysis has been suggested as a potential technique: it is a non destructive method of assessing the dynamic properties of a structure. Changes in the physical properties of a structure can be identified from changes in its dynamic properties. Consequently vibration analysis, both experimental and computational, has been used to assess bone fracture healing, prosthetic hip loosening and dental implant OI with varying degrees of success. More recently experimental vibration analysis has been used in TFOI. However further work is needed to assess the potential of the technique and fully characterise the femur-implant system. The overall aim of this study was to develop physical and computational models of the TFOI femur-implant system and use these models to investigate the feasibility of vibration analysis to detect the process of OI. Femur-implant physical models were developed and manufactured using synthetic materials to represent four key stages of OI development (identified from a physiological model), simulated using different interface conditions between the implant and femur. Experimental vibration analysis (modal analysis) was then conducted using the physical models. The femur-implant models, representing stage one to stage four of OI development, were excited and the modal parameters obtained over the range 0-5kHz. The results indicated the technique had limited capability in distinguishing between different interface conditions. The fundamental bending mode did not alter with interfacial changes. However higher modes were able to track chronological changes in interface condition by the change in natural frequency, although no one modal parameter could uniquely distinguish between each interface condition. The importance of the model boundary condition (how the model is constrained) was the key finding; variations in the boundary condition altered the modal parameters obtained. Therefore the boundary conditions need to be held constant between tests in order for the detected modal parameter changes to be attributed to interface condition changes. A three dimensional Finite Element (FE) model of the femur-implant model was then developed and used to explore the sensitivity of the modal parameters to more subtle interfacial and boundary condition changes. The FE model was created using the synthetic femur geometry and an approximation of the implant geometry. The natural frequencies of the FE model were found to match the experimental frequencies within 20% and the FE and experimental mode shapes were similar. Therefore the FE model was shown to successfully capture the dynamic response of the physical system. As was found with the experimental modal analysis, the fundamental bending mode of the FE model did not alter due to changes in interface elastic modulus. Axial and torsional modes were identified by the FE model that were not detected experimentally; the torsional mode exhibited the largest frequency change due to interfacial changes (103% between the lower and upper limits of the interface modulus range). Therefore the FE model provided additional information on the dynamic response of the system and was complementary to the experimental model. The small changes in natural frequency over a large range of interface region elastic moduli indicated the method may only be able to distinguish between early and late OI progression. The boundary conditions applied to the FE model influenced the modal parameters to a far greater extent than the interface condition variations. Therefore the FE model, as well as the experimental modal analysis, indicated that the boundary conditions need to be held constant between tests in order for the detected changes in modal parameters to be attributed to interface condition changes alone. The results of this study suggest that in a clinical setting it is unlikely that the in vivo boundary conditions of the amputated femur could be adequately controlled or replicated over time and consequently it is unlikely that any longitudinal change in frequency detected by the modal analysis technique could be attributed exclusively to changes at the femur-implant interface. Therefore further development of the modal analysis technique would require significant consideration of the clinical boundary conditions and investigation of modes other than the bending modes.