975 resultados para ORGANIC ACID
Resumo:
A capillary electrophoresis method for organic acids in wine was developed and validated. The optimal electrolyte consisted of 10 mmol/L 3,5-dinitrobenzoic acid (DNB) at pH 3.6 containing 0.2 mmol/L cetyltrimethylammonium bromide as flow reverser. DNB was chosen because it has an effective mobility similar to the organic acids under investigation, good buffering capacity at pH 3.6, and good chromophoric characteristics for indirect UV-absorbance detection at 254 nm. Sample preparation involved dilution and filtration. The method showed good performance characteristics: Linearity at 6 to 285 mg/L (r > 0.99); detection and quantification limits of 0.64 to 1.55 and 2.12 to 5.15 mg/L, respectively; separation time of less than 5.5 min. Coefficients of variation for ten injections were less than 5% and recoveries varied from 95% to 102%. Application to 23 samples of Brazilian wine confirmed good repeatability and demonstrated wide variation in the organic acid concentrations. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fresh-cut slices from ripe 'Kensington' mango (Mangifera indica L.) were prepared aseptically and stored under various treatments at 3 degrees C. Treatments included reduced oxygen (2.5%), enhanced carbon dioxide (5-40%), organic acid application, calcium chloride application, and combinations of the above. Symptoms limiting shelf-life were characterised by tissue darkening, development of a 'glassy' appearance, surface desiccation, and loss of firmness. Reduced oxygen (2.5%) was effective at controlling tissue darkening and the development of a 'glassy' appearance, while calcium application (3%) was partly effective at controlling darkening. Calcium chloride however significantly slowed (but did not stop) loss of tissue firmness. Carbon dioxide (5-40%) and citric acid had little positive effect on shelf-life, with both treatments appearing to promote tissue softening. A combination of low oxygen and calcium allowed 'Kensington' slices to be held for at least 15 days at 3 degrees C. (C) 2006 Elsevier B.V All rights reserved.
Resumo:
Separation of microbial cells by flotation recovery is usually carried out in industrial reactors or wastewater treatment systems, which contain a complex mixture of microbial nutrients and excretion products. In the present study, the separation of yeast cells by flotation recovery was carried out using a simple flotation recovery systems containing washed yeast cells resuspended in water in order to elucidate the effects of additives (defined amounts of organic and inorganic acids, ethanol, surfactants and sodium chloride) on the cellular interactions at interfaces (cell/aqueous phase and cell/air bubble). When sodium chloride, organic acids (notably propionic, succinic and acetic acids) and organic surfactants (sodium dodecyl sulphate (SDS), cetyltrimethylammonium bromide (CTAB) and Nonidet P40) were added to the flotation recovery system, significant increases in the cell recovery of yeast hydrophobic cells (Saccharomyces cerevisiae, strain FLT-01) were observed. The association of ethanol to acetic acid solution (a minor by-product of alcoholic fermentation) in the flotation recovery system, containing washed cells of strain FLT-01 resuspended in water, leading to an increased flotation recovery at pH 5.5. Thus, the association among products of the cellular metabolism (e.g., ethanol and acetic acid) can improve yeast cell recovery by flotation recovery. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The effect of an organic acid mixture (OA) and a Lactobacillus-based probiotic culture on Salmonella enteritidis (SE) infection in broiler chicks was evaluated. In exp. 1, chicks were challenged by oral gavage with SE, held in chick boxes for 2 h and randomly assigned to either untreated control or continuous OA treatment in the drinking water. Crop and cecal tonsils were cultured at 48 h and 5 d post-challenge for recovery of SE. Recovery of SE in the crop and cecal tonsils at 48 h was significantly (p<0.05) lower in the OA treated group as compared to control chickens but not different at 5d. In exps.2 and 3, chicks were SE challenged, held in chick boxes for 2 h and randomly assigned to either untreated control, probiotic, OA, or probiotic+OA. After 24 or 48 h, crop and cecal tonsils were cultured for the presence or absence of SE. After 24 h, probiotic or probiotic+OA significantly reduced SE recovery from the crop as compared to controls. All treatments reduced SE recovery from the cecal tonsils at 24 h. While no significant differences were observed in SE recovery from crop at 48 h, SE recovery from probiotic and or probiotic+OA groups was significantly lower than the controls in the cecal tonsils. These data suggest that combination treatment with the selected OA and Lactobacillus-based probiotic culture is more effective than individual treatment for Salmonella reduction in chicks. © Asian Network for Scientific Information, 2007.
Resumo:
Processo FAPESP: 10/20655-3
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Voltammetry has been employed to study the influence of systematic additions of citric acid on the E-I curves of Tin in 0.5 M NaClO4, in order to verify the film growth in the presence of the organic acid and the inhibition of the pitting corrosion of the metal. The minimum concentration of the organic acid needed to change the GI curves is 10(-2) M, in the pH range 1.0-4.0. At pH 3.0 and 4.0, the scan rate dependence on current density, in the potential region of formation and reduction of the film, showed that in a first stage adsorption occurs. In a second stage, the v(1/2) dependence found can he explained by ohmic resistance control. The formation of tin/citric acid complexes, 10(-2) M, is suggested. The pitting inhibition may be due to the formation of a mixed layer of tin in citric acid concentrations higher than 10(-2) oxide and tin citrate complexes on the electrode surface. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The objective of this study was to evaluate the chemical composition, fermentation patterns and aerobic stability of sugarcane silages with addition of amino acid production (monosodium glutamate) by-product (APB) and microbial inoculants. Mature sugarcane was chopped and ensiled in laboratory silos (n = 4/treatment) without additives (control) and with APB (10 g/kg), Pioneer 1174® (PIO, 1.0 mg/kg, Lactobacillus plantarum + Streptoccoccus faecium, Pioneer), Lalsil Cana (2.0 mg/kg, Lactobacillus buchineri, Lallemand) or Mercosil Maís 11C33® (1.0 mg/kg, Lactobacillus buchineri + Lactobacillus plantarum + Streptoccoccus faecium, Timac Agro). Fresh silage and silage liquor samples were obtained to assess pH, chemical composition and organic acid concentrations. Silage temperature was recorded throughout seven days to evaluate aerobic stability. The addition of APB decreased lactic acid levels, increased pH and N-NH3 and did not alter ethanol, acetic and butyric acids concentrations or dry matter (DM) losses. Microbial inoculants enhanced acetic acid levels, although only Pioneer 1174® and Mercosil Maís 11C33® lowered ethanol, butyric acid and DM losses. The addition of APB increased CP content and did not modify DM, soluble carbohydrates contents or in vitro dry matter digestibility. Additives did not alter silage maximum temperature or temperature increasing rate; however, Pioneer 1174® and Mercosil Maís 11C33® increased the time elapsed to reach maximum temperature. Monosodium glutamate production by-product does not alter fermentation patterns or aerobic stability of sugarcane silages, whereas homofermentative bacteria can provide silages of good quality.
Resumo:
Data on amounts of various functional groups, i.e. aldehyde, acid, ester, alcohol, thiol and aromatic groups in several fractions of low-polarity dissolved organic matter are presented. An assumption that this organic matter is part of the lipid fraction is not confirmed. Amount of aromatic compounds in waters of the Northwest Indian Ocean is estimated to be about 1000 times higher than quantity of aromatic hydrocarbons discharged into the ocean each year in petroleum and petroleum products.
Resumo:
Buckwheat (Fagopyrum esculentum Moench. cv Jianxi), which shows high Al resistance, accumulates Al in the leaves. The internal detoxification mechanism was studied by purifying and identifying Al complexes in the leaves and roots. About 90% of Al accumulated in the leaves was found in the cell sap, in which the dominant organic acid was oxalic acid. Purification of the Al complex in the cell sap of leaves by molecular-sieve chromatography resulted in a complex with a ratio of Al to oxalic acid of 1:3. A 13C-nuclear magnetic resonance study of the purified cell sap revealed only one signal at a chemical shift 164.4 ppm, which was assigned to the Al-chelated carboxylic group of oxalic acid. A 27Al-nuclear magnetic resonance analysis revealed one major signal at the chemical shift of 16.0 to 17.0 ppm, with a minor signal at the chemical shift of 11.0 to 12 ppm in both the intact roots and their cell sap, which is consistent with the Al-oxalate complexes at 1:3 and 1:2 ratios, respectively. The purified cell sap was not phytotoxic to root elongation in corn (Zea mays). All of these results indicate that Al tolerance in the roots and leaves of buckwheat is achieved by the formation of a nonphytotoxic Al-oxalate (1:3) complex.
Resumo:
Acknowledgements BP Exploration Co. is thanked for funding, and particularly the Carbonate Team (Anna Matthews, Teresa Sabato Ceraldi, and Darryl G. Green) for supporting this research and for fruitful discussions. Mark Anderson, Kim Rosewell, and Tony Sinclair (University of Hull) are thanked for laboratory assistance, and for SEM sample preparation and set-up respectively. The technical and human support from Prof. Jörg Hardege and Maggy A. Harley (University of Hull) was key to perform these experiments. We would like to acknowledge an anonymous reviewer for the detailed and constructive comments, and Brian Jones's editorial handling of the manuscript which is greatly appreciated.
Resumo:
Lactic acid bacteria expolysaccharides (LAB-EPS), in particular those formed from sucrose have the potential to improve food and beverage rheology and enhance their sensory properties potentially replacing or reducing expensive hydrocolloids currently used as improvers in food and beverage industries. Addition of sucrose not only enables EPS formation but also affects organic acid formation, thus influencing the sensory properties of the resulting food/beverage products. The first part of the study the organoleptic modulation of barley malt derived wort fermented using in situ produced bacterial polysaccharides has been investigated. Weisella cibaria MG1 was capable to produce exopolysaccharides during sucrosesupplemented barley malt derived wort fermentation. Even though the strain dominated the (sucrose-supplemented) wort fermentation, it was found to produce EPS (14.4 g l-1) with lower efficiency than in SucMRS (34.6 g l-1). Higher maltose concentration in wort led to the increased formation of oligosaccharide (OS) at the expense of EPS. Additionally, small amounts of organic acids were formed and ethanol remained below 0.5% (v/v). W. cibaria MG1 fermented worts supplemented with 5 or 10% sucrose displayed a shear-thinning behaviour indicating the formation of polymers. This report showed how novel and nutritious LAB fermented wort-base beverage with prospects for further advancements can be formulated using tailored microbial cultures. In the next step, the impact of exopolysaccharide-producing Weissella cibaria MG1 on the ability to improve rheological properties of fermented plant-based milk substitute plant based soy and quinoa grain was evaluated. W. cibaria MG1 grew well in soy milk, exceeding a cell count of log 8 cfu/g within 6 h of fermentation. The presence of W. cibaria MG1 led to a decrease in gelation and fermentation time. EPS isolated from soy yoghurts supplemented with sucrose were higher in molecular weight (1.1 x 108 g/mol vs 6.6 x 107 g/mol), and resulted in reduced gel stiffness (190 ± 2.89 Pa vs 244 ± 15.9 Pa). Soy yoghurts showed typical biopolymer gels structure and the network structure changed to larger pores and less cross-linking in the presence of sucrose and increasing molecular weight of the EPS. In situ investigation of Weissella cibaria MG1 producing EPS on quinoa-based milk was performed. The production of quinoa milk, starting from wholemeal quinoa flour, was optimised to maximise EPS production. On doing that, enzymatic destructuration of protein and carbohydrate components of quinoa milk was successfully achieved applying alpha-amylase and proteases treatments. Fermented wholemeal quinoa milk using Weissella cibaria MG1 showed high viable cell counts (>109 cfu/mL), a pH of 5.16, and significantly higher water holding capacity (WHC, 100 %), viscosity (> 0. 5 Pa s) and exopolysaccharide (EPS) amount (40 mg/L) than the chemically acidified control. High EPS (dextran) concentration in quinoa milk caused earlier aggregation because more EPS occupy more space, and the chenopodin were forced to interact with each other. Direct observation of microstructure in fermented quinoa milk indicated that the network structures of EPS-protein could improve the texture of fermented quinoa milk. Overall, Weissella cibaria MG1 showed favorable technology properties and great potential for further possible application in the development of high viscosity fermented quinoa milk. The last part of the study investigate the ex-situ LAB-EPS (dextran) application compared to other hydrocolloids as a novel food ingredient to compensate for low protein in biscuit and wholemeal wheat flour. Three hydrocolloids, xanthan gum, dextran and hydroxypropyl methylcellulose, were incorporated into bread recipes based on high-protein flours, low-protein flours and coarse wholemeal flour. Hydrocolloid levels of 0–5 % (flour basis) were used in bread recipes to test the water absorption. The quality parameters of dough (farinograph, extensograph, rheofermentometre) and bread (specific volume, crumb structure and staling profile) were determined. Results showed that xanthan had negative impact on the dough and bread quality characteristics. HPMC and dextran generally improved dough and bread quality and showed dosage dependence. Volume of low-protein flour breads were significantly improved by incorporation of 0.5 % of the latter two hydrocolloids. However, dextran outperformed HPMC regarding initial bread hardness and staling shelf life regardless the flour applied in the formulation.
Resumo:
The concentration of 14 organic acids of 50 sugarcane spirits samples was determined by gas chromatography using flame ionization detection. The organic acids analytical quantitative profile in stills and column distilled spirits from wines obtained from the same must were compared. The comparison was also carried in "head", "heart" and "tail fractions of stills distilled spirits. The experimental data were analyzed by Principal Components Analysis (PCA) and pointed out that the distillation process (stills and column) strongly influences the lead spirits' organic acid composition and that producers' operational "cuts off" to produce "tail", "heart" and "head", fractions should be optimized.