1000 resultados para OPTICAL-MICROCAVITY
Resumo:
Person tracking systems to date have either relied on motion detection or optical flow as a basis for person detection and tracking. As yet, systems have not been developed that utilise both these techniques. We propose a person tracking system that uses both, made possible by a novel hybrid optical flow-motion detection technique that we have developed. This provides the system with two methods of person detection, helping to avoid missed detections and the need to predict position, which can lead to errors in tracking and mistakes when handling occlusion situations. Our results show that our system is able to track people accurately, with an average error less than four pixels, and that our system outperforms the current CAVIAR benchmark system.
Resumo:
Person tracking systems are dependent on being able to locate a person accurately across a series of frames. Optical flow can be used to segment a moving object from a scene, provided the expected velocity of the moving object is known; but successful detection also relies on being able segment the background. A problem with existing optical flow techniques is that they don’t discriminate the foreground from the background, and so often detect motion (and thus the object) in the background. To overcome this problem, we propose a new optical flow technique, that is based upon an adaptive background segmentation technique, which only determines optical flow in regions of motion. This technique has been developed with a view to being used in surveillance systems, and our testing shows that for this application it is more effective than other standard optical flow techniques.
Resumo:
Machine downtime, whether planned or unplanned, is intuitively costly to manufacturing organisations, but is often very difficult to quantify. The available literature showed that costing processes are rarely undertaken within manufacturing organisations. Where cost analyses have been undertaken, they generally have only valued a small proportion of the affected costs, leading to an overly conservative estimate. This thesis aimed to develop a cost of downtime model, with particular emphasis on the application of the model to Australia Post’s Flat Mail Optical Character Reader (FMOCR). The costing analysis determined a cost of downtime of $5,700,000 per annum, or an average cost of $138 per operational hour. The second section of this work focused on the use of the cost of downtime to objectively determine areas of opportunity for cost reduction on the FMOCR. This was the first time within Post that maintenance costs were considered along side of downtime for determining machine performance. Because of this, the results of the analysis revealed areas which have historically not been targeted for cost reduction. Further exploratory work was undertaken on the Flats Lift Module (FLM) and Auto Induction Station (AIS) Deceleration Belts through the comparison of the results against two additional FMOCR analysis programs. This research has demonstrated the development of a methodical and quantifiable cost of downtime for the FMOCR. This has been the first time that Post has endeavoured to examine the cost of downtime. It is also one of the very few methodologies for valuing downtime costs that has been proposed in literature. The work undertaken has also demonstrated how the cost of downtime can be incorporated into machine performance analysis with specific application to identifying high costs modules. The outcome of this report has both been the methodology for costing downtime, as well as a list of areas for cost reduction. In doing so, this thesis has outlined the two key deliverables presented at the outset of the research.
Resumo:
Optical absorption and EPR studies of the mineral tenorite, a cupric oxide, which originated from Mexico and contains 54.40 wt% of CuO. EPR spectral results indicate two Cu(II) closely interacting ions to give a d2 type structure. The calculated spin Hamiltonian at Rt and LNT are g = 2.160 and D = 125 G . The intensity of resonance line is not the same in low and high field regions. The optical absorption spectrum is due to Cu(II) which three sets of energies indicating Cu(II) in two independent tetragonal C4v symmetry, in addition to d2 structure of octahedral coordination. The octahedral and tetragonal field parameters are compared with those reported for several other copper containing minerals.
Resumo:
Suggestions that peripheral imagery may affect the development of refractive error have led to interest in the variation in refraction and aberration across the visual field. It is shown that, if the optical system of the eye is rotationally symmetric about an optical axis which does not coincide with the visual axis, measurements of refraction and aberration made along the horizontal and vertical meridians of the visual field will show asymmetry about the visual axis. The departures from symmetry are modelled for second-order aberrations, refractive components and third-order coma. These theoretical results are compared with practical measurements from the literature. The experimental data support the concept that departures from symmetry about the visual axis in the measurements of crossed-cylinder astigmatism J45 and J180 are largely explicable in terms of a decentred optical axis. Measurements of the mean sphere M suggest, however, that the retinal curvature must differ in the horizontal and vertical meridians.
Resumo:
In this study, the authors propose a novel video stabilisation algorithm for mobile platforms with moving objects in the scene. The quality of videos obtained from mobile platforms, such as unmanned airborne vehicles, suffers from jitter caused by several factors. In order to remove this undesired jitter, the accurate estimation of global motion is essential. However it is difficult to estimate global motions accurately from mobile platforms due to increased estimation errors and noises. Additionally, large moving objects in the video scenes contribute to the estimation errors. Currently, only very few motion estimation algorithms have been developed for video scenes collected from mobile platforms, and this paper shows that these algorithms fail when there are large moving objects in the scene. In this study, a theoretical proof is provided which demonstrates that the use of delta optical flow can improve the robustness of video stabilisation in the presence of large moving objects in the scene. The authors also propose to use sorted arrays of local motions and the selection of feature points to separate outliers from inliers. The proposed algorithm is tested over six video sequences, collected from one fixed platform, four mobile platforms and one synthetic video, of which three contain large moving objects. Experiments show our proposed algorithm performs well to all these video sequences.
Resumo:
Object tracking systems require accurate segmentation of the objects from the background for effective tracking. Motion segmentation or optical flow can be used to segment incoming images. Whilst optical flow allows multiple moving targets to be separated based on their individual velocities, optical flow techniques are prone to errors caused by changing lighting and occlusions, both common in a surveillance environment. Motion segmentation techniques are more robust to fluctuating lighting and occlusions, but don't provide information on the direction of the motion. In this paper we propose a combined motion segmentation/optical flow algorithm for use in object tracking. The proposed algorithm uses the motion segmentation results to inform the optical flow calculations and ensure that optical flow is only calculated in regions of motion, and improve the performance of the optical flow around the edge of moving objects. Optical flow is calculated at pixel resolution and tracking of flow vectors is employed to improve performance and detect discontinuities, which can indicate the location of overlaps between objects. The algorithm is evaluated by attempting to extract a moving target within the flow images, given expected horizontal and vertical movement (i.e. the algorithms intended use for object tracking). Results show that the proposed algorithm outperforms other widely used optical flow techniques for this surveillance application.
Resumo:
Purpose: Small red lights (one minute of arc or less) change colour appearance with positive defocus. We investigated the influence of longitudinal chromatic aberration and monochromatic aberrations on the colour appearance of small narrow band lights. Methods: Seven cyclopleged, trichromatic observers viewed a small light (one minute of arc, λmax = 510, 532, 550, 589, 620, 628 nm, approximately 19 per cent Weber contrast) centred within a black annulus (4.5 minutes of arc) and surrounded by a uniform white field (2,170 cd/m2). Pupil size was four millimetres. An optical trombone varied focus. Longitudinal chromatic aberration was controlled with a two component Powell achromatising lens that neutralises the eye’s chromatic aberration; a doublet that doubles and a triplet that reverses the eye’s chromatic aberration. Astigmatism and higher order monochromatic aberrations were corrected using adaptive optics. Results: Observers reported a change in appearance of the small red light (628 nm) without the Powell lens at +0.49 ± 0.21 D defocus and with the doublet at +0.62 ± 0.16 D. Appearance did not alter with the Powell lens, and five of seven observers reported the phenomenon with the triplet for negative defocus (-0.80 ± 0.47 D). Correction of aberrations did not significantly affect the magnitude at which the appearance of the red light changed (+0.44 ± 0.18 D without correction; +0.46 ± 0.16 D with correction). The change in colour appearance with defocus extended to other wavelengths (λmax = 510 to 620 nm), with directions of effects being reversed for short wavelengths relative to long wavelengths. Conclusions: Longitudinal chromatic aberrations but not monochromatic aberrations are involved in changing the appearance of small lights with defocus.
Resumo:
Natural iowaite, magnesium–ferric oxychloride mineral having light green color originating from Australia has been characterized by EPR, optical, IR, and Raman spectroscopy. The optical spectrum exhibits a number of electronic bands due to both Fe(III) and Mn(II) ions in iowaite. From EPR studies, the g values are calculated for Fe(III) and g and A values for Mn(II). EPR and optical absorption studies confirm that Fe(III) and Mn(II) are in distorted octahedral geometry. The bands that appear both in NIR and Raman spectra are due to the overtones and combinations of water and carbonate molecules. Thus EPR, optical, and Raman spectroscopy have proven most useful for the study of the chemistry of natural iowaite and chemical changes in the mineral.
Resumo:
Motion has been examined in biology to be a critical component for obstacle avoidance and navigation. In particular, optical flow is a powerful motion cue that has been exploited in many biological systems for survival. In this paper, we investigate an obstacle detection system that uses optical flow to obtain range information to objects. Our experimental results demonstrate that optical flow is capable of providing good obstacle information but has obvious failure modes. We acknowledge that our optical flow system has certain disadvantages and cannot be solely used for navigation. Instead, we believe that optical flow is a critical visual subsystem used when moving at reason- able speeds. When combined with other visual subsystems, considerable synergy can result.
Resumo:
Optical flow (OF) is a powerful motion cue that captures the fusion of two important properties for the task of obstacle avoidance − 3D self-motion and 3D environmental surroundings. The problem of extracting such information for obstacle avoidance is commonly addressed through quantitative techniques such as time-to-contact and divergence, which are highly sensitive to noise in the OF image. This paper presents a new strategy towards obstacle avoidance in an indoor setting, using the combination of quantitative and structural properties of the OF field, coupled with the flexibility and efficiency of a machine learning system.The resulting system is able to effectively control the robot in real-time, avoiding obstacles in familiar and unfamiliar indoor environments, under given motion constraints. Furthermore, through the examination of the networks internal weights, we show how OF properties are being used toward the detection of these indoor obstacles.