993 resultados para OPTICAL-ELEMENTS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We outline a toolbox comprised of passive optical elements, single photon detection and superpositions of coherent states (Schrodinger cat states). Such a toolbox is a powerful collection of primitives for quantum information processing tasks. We illustrate its use by outlining a proposal for universal quantum computation. We utilize this toolbox for quantum metrology applications, for instance weak force measurements and precise phase estimation. We show in both these cases that a sensitivity at the Heisenberg limit is achievable.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We suggest a scheme to generate a macroscopic superposition state (Schrodinger cat state) of a free-propagating optical field using a beam splitter, homodyne measurement, and a very small Kerr nonlinear effect. Our scheme makes it possible to reduce considerably the required nonlinear effect to generate an optical cat state using simple and efficient optical elements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Generalised refraction is a topic which has, thus far, garnered far less attention than it deserves. The purpose of this thesis is to highlight the potential that generalised refraction has to offer with regards to imaging and its application to designing new passive optical devices. Specifically in this thesis we will explore two types of gener- alised refraction which takes place across a planar interface: refraction by generalised confocal lenslet arrays (gCLAs), and refraction by ray-rotation sheets. We will show that the corresponding laws of refraction for these interfaces produce, in general, light-ray fields with non-zero curl, and as such do not have a corresponding outgoing waveform. We will then show that gCLAs perform integral, geometrical imaging, and that this enables them to be considered as approximate realisations of metric tensor interfaces. The concept of piecewise transformation optics will be introduced and we will show that it is possible to use gCLAs along with other optical elements such as lenses to design simple piecewise transformation-optics devices such as invisibility cloaks and insulation windows. Finally, we shall show that ray-rotation sheets can be interpreted as performing geometrical imaging into complex space, and that as a consequence, ray-rotation sheets and gCLAs may in fact be more closely related than first realised. We conclude with a summary of potential future projects which lead naturally from the results of this thesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We show that a wide-angle converging wave may be transformed into a shape-preserving accelerating beam having a beam-width near the diffraction limit. For that purpose, we followed a strategy that is particularly conceived for the acceleration of nonparaxial laser beams, in contrast to the well-known method by Siviloglou et al (2007 Phys. Rev. Lett. 99 213901). The concept of optical near-field shaping is applied to the design of non-flat ultra-narrow diffractive optical elements. The engineered curvilinear caustic can be set up by the beam emerging from a dynamic assembly of elementary gratings, the latter enabling to modify the effective refractive index of the metamaterial as it is arranged in controlled orientations. This light shaping process, besides being of theoretical interest, is expected to open up a wide range of broadband application possibilities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Personal electronic devices, such as cell phones and tablets, continue to decrease in size while the number of features and add-ons keep increasing. One particular feature of great interest is an integrated projector system. Laser pico-projectors have been considered, but the technology has not been developed enough to warrant integration. With new advancements in diode technology and MEMS devices, laser-based projection is currently being advanced for pico-projectors. A primary problem encountered when using a pico-projector is coherent interference known as speckle. Laser speckle can lead to eye irritation and headaches after prolonged viewing. Diffractive optical elements known as diffusers have been examined as a means to lower speckle contrast. Diffusers are often rotated to achieve temporal averaging of the spatial phase pattern provided by diffuser surface. While diffusers are unable to completely eliminate speckle, they can be utilized to decrease the resultant contrast to provide a more visually acceptable image. This dissertation measures the reduction in speckle contrast achievable through the use of diffractive diffusers. A theoretical Fourier optics model is used to provide the diffuser’s stationary and in-motion performance in terms of the resultant contrast level. Contrast measurements of two diffractive diffusers are calculated theoretically and compared with experimental results. In addition, a novel binary diffuser design based on Hadamard matrices will be presented. Using two static in-line Hadamard diffusers eliminates the need for rotation or vibration of the diffuser for temporal averaging. Two Hadamard diffusers were fabricated and contrast values were subsequently measured, showing good agreement with theory and simulated values. Monochromatic speckle contrast values of 0.40 were achieved using the Hadamard diffusers. Finally, color laser projection devices require the use of red, green, and blue laser sources; therefore, using a monochromatic diffractive diffuser may not optimal for color speckle contrast reduction. A simulation of the Hadamard diffusers is conducted to determine the optimum spacing between the two diffusers for polychromatic speckle reduction. Experimental measured results are presented using the optimal spacing of Hadamard diffusers for RGB color speckle reduction, showing 60% reduction in contrast.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The nonlinear optical properties of many materials and devices have been the main object of research as potential candidates for sensing in different places. Just one of these properties has been, in most of the cases, the basis for the sensing operation. As a consequence, just one parameter can be detected. In this paper, although just one property will be employed too, we will show the possibility to sense different parameters with just one type of sensor. The way adopted in this work is the use of the optical bistability obtained from different photonic structures. Because this optical bistability has a strong dependence on many different parameters the possibility to sense different inputs appears. In our case, we will report the use of some non-linear optical devices, mainly Semiconductor Optical Amplifiers, as sensing elements. Because their outputs depend on many parameters, as the incident light wavelength, polarization, intensity and direction, applied voltage and feedback characteristics, they can be employed to detect, at the same time, different type of signals. This is because the way these different signals affect to the sensor response is very different too and appears under a different set of characteristics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Semiconductor Optical Amplifiers (SOAs) have mainly found application in optical telecommunication networks for optical signal regeneration, wavelength switching or wavelength conversion. The objective of this paper is to report the use of semiconductor optical amplifiers for optical sensing taking into account their optical bistable properties. As it was previously reported, some semiconductor optical amplifiers, including Fabry-Perot and Distributed-Feedback Semiconductor Optical Amplifiers (FPSOAs and DFBSOAs), may exhibit optical bistability. The characteristics of the attained optical bistability in this kind of devices are strongly dependent on different parameters including wavelength, temperature or applied bias current and small variations lead to a change on their bistable properties. As in previous analyses for Fabry-Perot and DFB SOAs, the variations of these parameters and their possible application for optical sensing are reported in this paper for the case of the Vertical-Cavity Semiconductor Optical Amplifier (VCSOA). When using a VCSOA, the input power needed for the appearance of optical bistability is one order of magnitude lower than that needed in edge-emitting devices. This feature, added to the low manufacturing costs of VCSOAs and the ease to integrate them in 2-D arrays, makes the VCSOA a very promising device for its potential use in optical sensing applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tunable photonic elements at the surface of an optical fiber with piezoelectric core are proposed and analyzed theoretically. These elements are based on whispering gallery modes whose propagation along the fiber is fully controlled by nanoscale variation of the effective fiber radius, which can be tuned by means of a piezoelectric actuator embedded into the core. The developed theory allows one to express the introduced effective radius variation through the shape of the actuator and the voltage applied to it. In particular, the designs of a miniature tunable optical delay line and a miniature tunable dispersion compensator are presented. The potential application of the suggested model to the design of a miniature optical buffer is also discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Microfluidic technologies have great potential to help create automated, cost-effective, portable devices for rapid point of care (POC) diagnostics in diverse patient settings. Unfortunately commercialization is currently constrained by the materials, reagents, and instrumentation required and detection element performance. While most microfluidic studies utilize planar detection elements, this dissertation demonstrates the utility of porous volumetric detection elements to improve detection sensitivity and reduce assay times. Impedemetric immunoassays were performed utilizing silver enhanced gold nanoparticle immunoconjugates (AuIgGs) and porous polymer monolith or silica bead bed detection elements within a thermoplastic microchannel. For a direct assay with 10 µm spaced electrodes the detection limit was 0.13 fM AuIgG with a 3 log dynamic range. The same assay was performed with electrode spacing of 15, 40, and 100 µm with no significant difference between configurations. For a sandwich assay the detection limit was10 ng/mL with a 4 log dynamic range. While most impedemetric assays rely on expensive high resolution electrodes to enhance planar senor performance, this study demonstrates the employment of porous volumetric detection elements to achieve similar performance using lower resolution electrodes and shorter incubation times. Optical immunoassays were performed using porous volumetric capture elements perfused with refractive index matching solutions to limit light scattering and enhance signal. First, fluorescence signal enhancement was demonstrated with a porous polymer monolith within a silica capillary. Next, transmission enhancement of a direct assay was demonstrated by infusing aqueous sucrose solutions through silica bead beds with captured silver enhanced AuIgGs yielding a detection limit of 0.1 ng/mL and a 5 log dynamic range. Finally, ex situ functionalized porous silica monolith segments were integrated into thermoplastic channels for a reflectance based sandwich assay yielding a detection limit of 1 ng/mL and a 5 log dynamic range. The simple techniques for optical signal enhancement and ex situ element integration enable development of sensitive, multiplexed microfluidic sensors. Collectively the demonstrated experiments validate the use of porous volumetric detection elements to enhance impedemetric and optical microfluidic assays. The techniques rely on commercial reagents, materials compatible with manufacturing, and measurement instrumentation adaptable to POC diagnostics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structural, dielectric, and vibrational properties of pure and rare earth (RE)-doped Ba(0.77) Ca(0.23)TiO(3) (BCT23; RE = Nd, Sm, Pr, Yb) ceramics obtained via solid-state reaction were investigated. The pure and RE-doped BCT23 ceramics sintered at 1450 degrees C in air for 4 h showed a dense microstructure in all ceramics. The use of RE ions as dopants introduced lattice-parameter changes that manifested in the reduction of the volume of the unit cell. RE-doped BCT23 samples exhibit a more homogenous microstructure due to the absence of a Ti-rich phase in the grain boundaries as demonstrated by scanning electron microscopy imaging. The incorporation of REs led to perturbations of the local symmetry of TiO(6) octahedra and the creation of a new Raman mode. The results of Raman scattering measurements indicated that the Curie temperature of the ferroelectric phase transition depends on the RE ion and ion content, with the Curie temperature shifting toward lower values as the RE content increases, with the exception of Yb(3+) doping, which did not affect the ferroelectric phase transition temperature. The phase transition behavior is explained using the standard soft mode model. Electronic paramagnetic resonance measurements showed the existence of Ti vacancies in the structure of RE-doped BCT23. Defects are created via charge compensation mechanisms due to the incorporation of elements with a different valence state relative to the ions of the pure BCT23 host. It is concluded that the Ti vacancies are responsible for the activation of the Raman mode at 840 cm(-1), which is in agreement with lattice dynamics calculations. (c) 2011 American Institute of Physics. [doi:10.1063/1.3594710]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of cancer is a complex, multistage process during which a normal cell undergoes genetic changes that result in phenotypic alterations and in the acquisition of the ability to invade other sites. Inductively coupled plasma optical emission spectroscopy was used to estimate the contents of Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, P, Pb, and Zn in healthy kidney and renal cell carcinoma (RCC), and significant differences were found for all elements. Along with the progression of the malignant disease, a progressive decrease of Cd and K was observed. In fact, for Cd, the concentration in stage T4 was 263.9 times lower than in stage T1, and for K, the concentration in stage T4 was 1.73 times lower than in stage T1. Progressive accumulation was detected for P, Pb, and Zn in stage T4. For P, the concentration in stage T4 was 11.1 times higher than in stage T1; for Pb, the concentration in stage T4 was 232.7 times higher than in T1; and for Zn, the concentration in T4 was 8.452 times higher than in T1. This study highlights the marked differences in the concentrations of selected trace metals in different malignant tumor stages. These findings indicate that some trace metals may play important roles in the pathogenesis of RCC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inductively coupled plasma optical emission spectrometers (ICP DES) allow fast simultaneous measurements of several spectral lines for multiple elements. The combination of signal intensities of two or more emission lines for each element may bring such advantages as improvement of the precision, the minimization of systematic errors caused by spectral interferences and matrix effects. In this work, signal intensities for several spectral lines were combined for the determination of Al, Cd, Co, Cr, Mn, Pb, and Zn in water. Afterwards, parameters for evaluation of the calibration model were calculated to select the combination of emission lines leading to the best accuracy (lowest values of PRESS-Predicted error sum of squares and RMSEP-Root means square error of prediction). Limits of detection (LOD) obtained using multiple lines were 7.1, 0.5, 4.4, 0.042, 3.3, 28 and 6.7 mu g L(-1) (n = 10) for Al, Cd. Co, Cr, Mn, Pb and Zn, respectively, in the presence of concomitants. On the other hand, the LOD established for the most intense emission line were 16. 0.7, 8.4, 0.074. 23, 26 and 9.6 mu g L(-1) (n = 10) for these same elements in the presence of concomitants. The accuracy of the developed procedure was demonstrated using water certified reference material. The use of multiple lines improved the sensitivity making feasible the determination of these analytes according to the target values required for the current environmental legislation for water samples and it was also demonstrated that measurements in multiple lines can also be employed as a tool to verify the accuracy of an analytical procedure in ICP DES. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A procedure for partial digestion of bovine tissue is proposed using polytetrafluoroethylene (PTFE) microvessels inside a baby-bottle sterilizer under microwave radiation for multi-element determination by inductively coupled plasma optical emission spectrometry (ICP OES). Samples were directly weighed in laboratory-made polytetrafluoroethylene vessels. Nitric acid and hydrogen peroxide were added to the uncovered vessels, which were positioned inside the baby-bottle sterilizer, containing 500 mL of water. The hydrogen peroxide volume was fixed at 100 mu L The system was placed in a domestic microwave oven and partial digestion was carried out for the determination of Ca, Cu, Fe. Mg, Mn and Zn by inductively coupled plasma optical emission spectrometry. The single-vessel approach was used in the entire procedure, to minimize contamination in trace analysis. Better recoveries and lower residual carbon content (RCC) levels were obtained under the conditions established through a 2(4-1) fractional factorial design: 650 W microwave power, 7 min digestion time, 50 mu L nitric acid and 50 mg sample mass. The digestion efficiency was ascertained according to the residual carbon content determined by inductively coupled plasma optical emission spectrometry. The accuracy of the proposed procedure was checked against two certified reference materials. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Montreal Process indicators are intended to provide a common framework for assessing and reviewing progress toward sustainable forest management. The potential of a combined geometrical-optical/spectral mixture analysis model was assessed for mapping the Montreal Process age class and successional age indicators at a regional scale using Landsat Thematic data. The project location is an area of eucalyptus forest in Emu Creek State Forest, Southeast Queensland, Australia. A quantitative model relating the spectral reflectance of a forest to the illumination geometry, slope, and aspect of the terrain surface and the size, shape, and density, and canopy size. Inversion of this model necessitated the use of spectral mixture analysis to recover subpixel information on the fractional extent of ground scene elements (such as sunlit canopy, shaded canopy, sunlit background, and shaded background). Results obtained fron a sensitivity analysis allowed improved allocation of resources to maximize the predictive accuracy of the model. It was found that modeled estimates of crown cover projection, canopy size, and tree densities had significant agreement with field and air photo-interpreted estimates. However, the accuracy of the successional stage classification was limited. The results obtained highlight the potential for future integration of high and moderate spatial resolution-imaging sensors for monitoring forest structure and condition. (C) Elsevier Science Inc., 2000.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, there has been increasing fish consumption in Brazil, largely due to the popularity of Japanese cuisine. No study, however, has previously assessed the presence of inorganic contaminants in species used in the preparation of Japanese food. In this paper, we determined total arsenic, cadmium, chromium, total mercury, and lead contents in 82 fish samples of Tuna (Thunnus thynnus), Porgy (Pagrus pagrus), Snook (Centropomus sp.), and Salmon (Salmo salar) species marketed in Sao Paulo (Brazil). Samples were mineralized in HNO(3)/H(2)O(2) for As, Cd, Cr and Pb, and in HNO(3)/H(2)SO(4)/V(2)O(5) for Hg. Inorganic contaminants were determined after the validation of the methodology using Inductively Coupled Plasma Optical Emission Spectrometry (ICP OES); and for Hg, an ICP-coupled hydride generator was used. Concentration ranges for elements analyzed in mg kg(-1) (wet base) were as follows: Total As (0.11-10.82); Cd (0.005-0.047); Cr (0.008-0.259); Pb (0.026-0.481); and total Hg (0.0077-0.9681). As and Cr levels exceeded the maximum limits allowed by the Brazilian law (1 and 0.1 mg kg(-1)) in 51.2 and 7.3% of the total samples studied, respectively. The most contaminated species were porgy (As = 95% and Cr = 10%) and tuna (As 91% and Cr = 10%). An estimation of As, Cd, Pb, and Hg weekly intake was calculated considering a 60 kg adult person and a 350 g consumption of fish per week, with As and Hg elements presenting the highest contribution on diets reaching 222% of provisional tolerable weekly intake (PTWI) for As in porgy and 41% of PTWI for Hg in tuna. (C) 2010 Elsevier Ltd. All rights reserved.