991 resultados para Numerical scheme


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rigorous quantum dynamics calculations of reaction rates and initial state-selected reaction probabilities of polyatomic reactions can be efficiently performed within the quantum transition state concept employing flux correlation functions and wave packet propagation utilizing the multi-configurational time-dependent Hartree approach. Here, analytical formulas and a numerical scheme extending this approach to the calculation of state-to-state reaction probabilities are presented. The formulas derived facilitate the use of three different dividing surfaces: two dividing surfaces located in the product and reactant asymptotic region facilitate full state resolution while a third dividing surface placed in the transition state region can be used to define an additional flux operator. The eigenstates of the corresponding thermal flux operator then correspond to vibrational states of the activated complex. Transforming these states to reactant and product coordinates and propagating them into the respective asymptotic region, the full scattering matrix can be obtained. To illustrate the new approach, test calculations study the D + H2(ν, j) → HD(ν′, j′) + H reaction for J = 0.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we present an efficient numerical scheme for the recently introduced geodesic active fields (GAF) framework for geometric image registration. This framework considers the registration task as a weighted minimal surface problem. Hence, the data-term and the regularization-term are combined through multiplication in a single, parametrization invariant and geometric cost functional. The multiplicative coupling provides an intrinsic, spatially varying and data-dependent tuning of the regularization strength, and the parametrization invariance allows working with images of nonflat geometry, generally defined on any smoothly parametrizable manifold. The resulting energy-minimizing flow, however, has poor numerical properties. Here, we provide an efficient numerical scheme that uses a splitting approach; data and regularity terms are optimized over two distinct deformation fields that are constrained to be equal via an augmented Lagrangian approach. Our approach is more flexible than standard Gaussian regularization, since one can interpolate freely between isotropic Gaussian and anisotropic TV-like smoothing. In this paper, we compare the geodesic active fields method with the popular Demons method and three more recent state-of-the-art algorithms: NL-optical flow, MRF image registration, and landmark-enhanced large displacement optical flow. Thus, we can show the advantages of the proposed FastGAF method. It compares favorably against Demons, both in terms of registration speed and quality. Over the range of example applications, it also consistently produces results not far from more dedicated state-of-the-art methods, illustrating the flexibility of the proposed framework.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Inference of Markov random field images segmentation models is usually performed using iterative methods which adapt the well-known expectation-maximization (EM) algorithm for independent mixture models. However, some of these adaptations are ad hoc and may turn out numerically unstable. In this paper, we review three EM-like variants for Markov random field segmentation and compare their convergence properties both at the theoretical and practical levels. We specifically advocate a numerical scheme involving asynchronous voxel updating, for which general convergence results can be established. Our experiments on brain tissue classification in magnetic resonance images provide evidence that this algorithm may achieve significantly faster convergence than its competitors while yielding at least as good segmentation results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We propose a finite element approximation of a system of partial differential equations describing the coupling between the propagation of electrical potential and large deformations of the cardiac tissue. The underlying mathematical model is based on the active strain assumption, in which it is assumed that a multiplicative decomposition of the deformation tensor into a passive and active part holds, the latter carrying the information of the electrical potential propagation and anisotropy of the cardiac tissue into the equations of either incompressible or compressible nonlinear elasticity, governing the mechanical response of the biological material. In addition, by changing from an Eulerian to a Lagrangian configuration, the bidomain or monodomain equations modeling the evolution of the electrical propagation exhibit a nonlinear diffusion term. Piecewise quadratic finite elements are employed to approximate the displacements field, whereas for pressure, electrical potentials and ionic variables are approximated by piecewise linear elements. Various numerical tests performed with a parallel finite element code illustrate that the proposed model can capture some important features of the electromechanical coupling, and show that our numerical scheme is efficient and accurate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis gives an overview of the use of the level set methods in the field of image science. The similar fast marching method is discussed for comparison, also the narrow band and the particle level set methods are introduced. The level set method is a numerical scheme for representing, deforming and recovering structures in an arbitrary dimensions. It approximates and tracks the moving interfaces, dynamic curves and surfaces. The level set method does not define how and why some boundary is advancing the way it is but simply represents and tracks the boundary. The principal idea of the level set method is to represent the N dimensional boundary in the N+l dimensions. This gives the generality to represent even the complex boundaries. The level set methods can be powerful tools to represent dynamic boundaries, but they can require lot of computing power. Specially the basic level set method have considerable computational burden. This burden can be alleviated with more sophisticated versions of the level set algorithm like the narrow band level set method or with the programmable hardware implementation. Also the parallel approach can be used in suitable applications. It is concluded that these methods can be used in a quite broad range of image applications, like computer vision and graphics, scientific visualization and also to solve problems in computational physics. Level set methods and methods derived and inspired by it will be in the front line of image processing also in the future.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The dynamics of flexible systems, such as robot manipulators , mechanical chains or multibody systems in general, is becoming increasingly important in engineering. This article deals with some nonlinearities that arise in the study of dynamics and control of multibody systems in connection to large rotations. Specifically, a numerical scheme that adresses the conservation of fundamental constants is presented in order to analyse the control-structure interaction problems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Réalisé en majeure partie sous la tutelle de feu le Professeur Paul Arminjon. Après sa disparition, le Docteur Aziz Madrane a pris la relève de la direction de mes travaux.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dans cette thèse, nous présentons une nouvelle méthode smoothed particle hydrodynamics (SPH) pour la résolution des équations de Navier-Stokes incompressibles, même en présence des forces singulières. Les termes de sources singulières sont traités d'une manière similaire à celle que l'on retrouve dans la méthode Immersed Boundary (IB) de Peskin (2002) ou de la méthode régularisée de Stokeslets (Cortez, 2001). Dans notre schéma numérique, nous mettons en oeuvre une méthode de projection sans pression de second ordre inspirée de Kim et Moin (1985). Ce schéma évite complètement les difficultés qui peuvent être rencontrées avec la prescription des conditions aux frontières de Neumann sur la pression. Nous présentons deux variantes de cette approche: l'une, Lagrangienne, qui est communément utilisée et l'autre, Eulerienne, car nous considérons simplement que les particules SPH sont des points de quadrature où les propriétés du fluide sont calculées, donc, ces points peuvent être laissés fixes dans le temps. Notre méthode SPH est d'abord testée à la résolution du problème de Poiseuille bidimensionnel entre deux plaques infinies et nous effectuons une analyse détaillée de l'erreur des calculs. Pour ce problème, les résultats sont similaires autant lorsque les particules SPH sont libres de se déplacer que lorsqu'elles sont fixes. Nous traitons, par ailleurs, du problème de la dynamique d'une membrane immergée dans un fluide visqueux et incompressible avec notre méthode SPH. La membrane est représentée par une spline cubique le long de laquelle la tension présente dans la membrane est calculée et transmise au fluide environnant. Les équations de Navier-Stokes, avec une force singulière issue de la membrane sont ensuite résolues pour déterminer la vitesse du fluide dans lequel est immergée la membrane. La vitesse du fluide, ainsi obtenue, est interpolée sur l'interface, afin de déterminer son déplacement. Nous discutons des avantages à maintenir les particules SPH fixes au lieu de les laisser libres de se déplacer. Nous appliquons ensuite notre méthode SPH à la simulation des écoulements confinés des solutions de polymères non dilués avec une interaction hydrodynamique et des forces d'exclusion de volume. Le point de départ de l'algorithme est le système couplé des équations de Langevin pour les polymères et le solvant (CLEPS) (voir par exemple Oono et Freed (1981) et Öttinger et Rabin (1989)) décrivant, dans le cas présent, les dynamiques microscopiques d'une solution de polymère en écoulement avec une représentation bille-ressort des macromolécules. Des tests numériques de certains écoulements dans des canaux bidimensionnels révèlent que l'utilisation de la méthode de projection d'ordre deux couplée à des points de quadrature SPH fixes conduit à un ordre de convergence de la vitesse qui est de deux et à une convergence d'ordre sensiblement égale à deux pour la pression, pourvu que la solution soit suffisamment lisse. Dans le cas des calculs à grandes échelles pour les altères et pour les chaînes de bille-ressort, un choix approprié du nombre de particules SPH en fonction du nombre des billes N permet, en l'absence des forces d'exclusion de volume, de montrer que le coût de notre algorithme est d'ordre O(N). Enfin, nous amorçons des calculs tridimensionnels avec notre modèle SPH. Dans cette optique, nous résolvons le problème de l'écoulement de Poiseuille tridimensionnel entre deux plaques parallèles infinies et le problème de l'écoulement de Poiseuille dans une conduite rectangulaire infiniment longue. De plus, nous simulons en dimension trois des écoulements confinés entre deux plaques infinies des solutions de polymères non diluées avec une interaction hydrodynamique et des forces d'exclusion de volume.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Magnetic clouds are a subset of interplanetary coronal mass ejections characterized by a smooth rotation in the magnetic field direction, which is interpreted as a signature of a magnetic flux rope. Suprathermal electron observations indicate that one or both ends of a magnetic cloud typically remain connected to the Sun as it moves out through the heliosphere. With distance from the axis of the flux rope, out toward its edge, the magnetic field winds more tightly about the axis and electrons must traverse longer magnetic field lines to reach the same heliocentric distance. This increased time of flight allows greater pitch-angle scattering to occur, meaning suprathermal electron pitch-angle distributions should be systematically broader at the edges of the flux rope than at the axis. We model this effect with an analytical magnetic flux rope model and a numerical scheme for suprathermal electron pitch-angle scattering and find that the signature of a magnetic flux rope should be observable with the typical pitch-angle resolution of suprathermal electron data provided ACE's SWEPAM instrument. Evidence of this signature in the observations, however, is weak, possibly because reconnection of magnetic fields within the flux rope acts to intermix flux tubes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper is concerned with solving numerically the Dirichlet boundary value problem for Laplace’s equation in a nonlocally perturbed half-plane. This problem arises in the simulation of classical unsteady water wave problems. The starting point for the numerical scheme is the boundary integral equation reformulation of this problem as an integral equation of the second kind on the real line in Preston et al. (2008, J. Int. Equ. Appl., 20, 121–152). We present a Nystr¨om method for numerical solution of this integral equation and show stability and convergence, and we present and analyse a numerical scheme for computing the Dirichlet-to-Neumann map, i.e., for deducing the instantaneous fluid surface velocity from the velocity potential on the surface, a key computational step in unsteady water wave simulations. In particular, we show that our numerical schemes are superalgebraically convergent if the fluid surface is infinitely smooth. The theoretical results are illustrated by numerical experiments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A numerical scheme is presented for the solution of the Euler equations of compressible flow of a real gas in a single spatial coordinate. This includes flow in a duct of variable cross-section, as well as flow with slab, cylindrical or spherical symmetry, as well as the case of an ideal gas, and can be useful when testing codes for the two-dimensional equations governing compressible flow of a real gas. The resulting scheme requires an average of the flow variables across the interface between cells, and this average is chosen to be the arithmetic mean for computational efficiency, which is in contrast to the usual “square root” averages found in this type of scheme. The scheme is applied with success to five problems with either slab or cylindrical symmetry and for a number of equations of state. The results compare favourably with the results from other schemes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A numerical scheme is presented for the solution of the Euler equations of compressible flow of a gas in a single spatial co-ordinate. This includes flow in a duct of variable cross-section as well as flow with slab, cylindrical or spherical symmetry and can prove useful when testing codes for the two-dimensional equations governing compressible flow of a gas. The resulting scheme requires an average of the flow variables across the interface between cells and for computational efficiency this average is chosen to be the arithmetic mean, which is in contrast to the usual ‘square root’ averages found in this type of scheme. The scheme is applied with success to five problems with either slab or cylindrical symmetry and a comparison is made in the cylindrical case with results from a two-dimensional problem with no sources.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A numerical scheme is presented tor the solution of the shallow water equations in a single radial coordinate. This can prove useful when testing codes for the two-dimensional shallow water equations. The scheme is applied with success to problems involving converging and diverging bores.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Solutions of a two-dimensional dam break problem are presented for two tailwater/reservoir height ratios. The numerical scheme used is an extension of one previously given by the author [J. Hyd. Res. 26(3), 293–306 (1988)], and is based on numerical characteristic decomposition. Thus approximate solutions are obtained via linearised problems, and the method of upwind differencing is used for the resulting scalar problems, together with a flux limiter for obtaining a second order scheme which avoids non-physical, spurious oscillations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A numerical scheme is presented for the solution of the Euler equations of compressible flow of a real gas in a single spatial coordinate. This include flow in a duct of variable cross-section as well as flow with cylindrical or spherical symmetry, and can prove useful when testing codes for the two-dimensional equations governing compressible flow of a real gas. The scheme is applied with success to a problem involving the interaction of converging and diverging cylindrical shocks for four equations of state and to a problem involving the reflection of a converging shock.