946 resultados para Numerical error


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Estimating the magnitude of Agulhas leakage, the volume flux of water from the Indian to the Atlantic Ocean, is difficult because of the presence of other circulation systems in the Agulhas region. Indian Ocean water in the Atlantic Ocean is vigorously mixed and diluted in the Cape Basin. Eulerian integration methods, where the velocity field perpendicular to a section is integrated to yield a flux, have to be calibrated so that only the flux by Agulhas leakage is sampled. Two Eulerian methods for estimating the magnitude of Agulhas leakage are tested within a high-resolution two-way nested model with the goal to devise a mooring-based measurement strategy. At the GoodHope line, a section halfway through the Cape Basin, the integrated velocity perpendicular to that line is compared to the magnitude of Agulhas leakage as determined from the transport carried by numerical Lagrangian floats. In the first method, integration is limited to the flux of water warmer and more saline than specific threshold values. These threshold values are determined by maximizing the correlation with the float-determined time series. By using the threshold values, approximately half of the leakage can directly be measured. The total amount of Agulhas leakage can be estimated using a linear regression, within a 90% confidence band of 12 Sv. In the second method, a subregion of the GoodHope line is sought so that integration over that subregion yields an Eulerian flux as close to the float-determined leakage as possible. It appears that when integration is limited within the model to the upper 300 m of the water column within 900 km of the African coast the time series have the smallest root-mean-square difference. This method yields a root-mean-square error of only 5.2 Sv but the 90% confidence band of the estimate is 20 Sv. It is concluded that the optimum thermohaline threshold method leads to more accurate estimates even though the directly measured transport is a factor of two lower than the actual magnitude of Agulhas leakage in this model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exact error estimates for evaluating multi-dimensional integrals are considered. An estimate is called exact if the rates of convergence for the low- and upper-bound estimate coincide. The algorithm with such an exact rate is called optimal. Such an algorithm has an unimprovable rate of convergence. The problem of existing exact estimates and optimal algorithms is discussed for some functional spaces that define the regularity of the integrand. Important for practical computations data classes are considered: classes of functions with bounded derivatives and Holder type conditions. The aim of the paper is to analyze the performance of two optimal classes of algorithms: deterministic and randomized for computing multidimensional integrals. It is also shown how the smoothness of the integrand can be exploited to construct better randomized algorithms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a new iterative algorithm for orthogonal frequency division multiplexing (OFDM) joint data detection and phase noise (PHN) cancellation based on minimum mean square prediction error. We particularly highlight the relatively less studied problem of "overfitting" such that the iterative approach may converge to a trivial solution. Specifically, we apply a hard-decision procedure at every iterative step to overcome the overfitting. Moreover, compared with existing algorithms, a more accurate Pade approximation is used to represent the PHN, and finally a more robust and compact fast process based on Givens rotation is proposed to reduce the complexity to a practical level. Numerical Simulations are also given to verify the proposed algorithm. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analyze a fully discrete spectral method for the numerical solution of the initial- and periodic boundary-value problem for two nonlinear, nonlocal, dispersive wave equations, the Benjamin–Ono and the Intermediate Long Wave equations. The equations are discretized in space by the standard Fourier–Galerkin spectral method and in time by the explicit leap-frog scheme. For the resulting fully discrete, conditionally stable scheme we prove an L2-error bound of spectral accuracy in space and of second-order accuracy in time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper the meteorological processes responsible for transporting tracer during the second ETEX (European Tracer EXperiment) release are determined using the UK Met Office Unified Model (UM). The UM predicted distribution of tracer is also compared with observations from the ETEX campaign. The dominant meteorological process is a warm conveyor belt which transports large amounts of tracer away from the surface up to a height of 4 km over a 36 h period. Convection is also an important process, transporting tracer to heights of up to 8 km. Potential sources of error when using an operational numerical weather prediction model to forecast air quality are also investigated. These potential sources of error include model dynamics, model resolution and model physics. In the UM a semi-Lagrangian monotonic advection scheme is used with cubic polynomial interpolation. This can predict unrealistic negative values of tracer which are subsequently set to zero, and hence results in an overprediction of tracer concentrations. In order to conserve mass in the UM tracer simulations it was necessary to include a flux corrected transport method. Model resolution can also affect the accuracy of predicted tracer distributions. Low resolution simulations (50 km grid length) were unable to resolve a change in wind direction observed during ETEX 2, this led to an error in the transport direction and hence an error in tracer distribution. High resolution simulations (12 km grid length) captured the change in wind direction and hence produced a tracer distribution that compared better with the observations. The representation of convective mixing was found to have a large effect on the vertical transport of tracer. Turning off the convective mixing parameterisation in the UM significantly reduced the vertical transport of tracer. Finally, air quality forecasts were found to be sensitive to the timing of synoptic scale features. Errors in the position of the cold front relative to the tracer release location of only 1 h resulted in changes in the predicted tracer concentrations that were of the same order of magnitude as the absolute tracer concentrations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The background error covariance matrix, B, is often used in variational data assimilation for numerical weather prediction as a static and hence poor approximation to the fully dynamic forecast error covariance matrix, Pf. In this paper the concept of an Ensemble Reduced Rank Kalman Filter (EnRRKF) is outlined. In the EnRRKF the forecast error statistics in a subspace defined by an ensemble of states forecast by the dynamic model are found. These statistics are merged in a formal way with the static statistics, which apply in the remainder of the space. The combined statistics may then be used in a variational data assimilation setting. It is hoped that the nonlinear error growth of small-scale weather systems will be accurately captured by the EnRRKF, to produce accurate analyses and ultimately improved forecasts of extreme events.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Assimilation of temperature observations into an ocean model near the equator often results in a dynamically unbalanced state with unrealistic overturning circulations. The way in which these circulations arise from systematic errors in the model or its forcing is discussed. A scheme is proposed, based on the theory of state augmentation, which uses the departures of the model state from the observations to update slowly evolving bias fields. Results are summarized from an experiment applying this bias correction scheme to an ocean general circulation model. They show that the method produces more balanced analyses and a better fit to the temperature observations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the two-point boundary value problem for stiff systems of ordinary differential equations. For systems that can be transformed to essentially diagonally dominant form with appropriate smoothness conditions, a priori estimates are obtained. Problems with turning points can be treated with this theory, and we discuss this in detail. We give robust difference approximations and present error estimates for these schemes. In particular we give a detailed description of how to transform a general system to essentially diagonally dominant form and then stretch the independent variable so that the system will satisfy the correct smoothness conditions. Numerical examples are presented for both linear and nonlinear problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation deals with aspects of sequential data assimilation (in particular ensemble Kalman filtering) and numerical weather forecasting. In the first part, the recently formulated Ensemble Kalman-Bucy (EnKBF) filter is revisited. It is shown that the previously used numerical integration scheme fails when the magnitude of the background error covariance grows beyond that of the observational error covariance in the forecast window. Therefore, we present a suitable integration scheme that handles the stiffening of the differential equations involved and doesn’t represent further computational expense. Moreover, a transform-based alternative to the EnKBF is developed: under this scheme, the operations are performed in the ensemble space instead of in the state space. Advantages of this formulation are explained. For the first time, the EnKBF is implemented in an atmospheric model. The second part of this work deals with ensemble clustering, a phenomenon that arises when performing data assimilation using of deterministic ensemble square root filters in highly nonlinear forecast models. Namely, an M-member ensemble detaches into an outlier and a cluster of M-1 members. Previous works may suggest that this issue represents a failure of EnSRFs; this work dispels that notion. It is shown that ensemble clustering can be reverted also due to nonlinear processes, in particular the alternation between nonlinear expansion and compression of the ensemble for different regions of the attractor. Some EnSRFs that use random rotations have been developed to overcome this issue; these formulations are analyzed and their advantages and disadvantages with respect to common EnSRFs are discussed. The third and last part contains the implementation of the Robert-Asselin-Williams (RAW) filter in an atmospheric model. The RAW filter is an improvement to the widely popular Robert-Asselin filter that successfully suppresses spurious computational waves while avoiding any distortion in the mean value of the function. Using statistical significance tests both at the local and field level, it is shown that the climatology of the SPEEDY model is not modified by the changed time stepping scheme; hence, no retuning of the parameterizations is required. It is found the accuracy of the medium-term forecasts is increased by using the RAW filter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data assimilation refers to the problem of finding trajectories of a prescribed dynamical model in such a way that the output of the model (usually some function of the model states) follows a given time series of observations. Typically though, these two requirements cannot both be met at the same time–tracking the observations is not possible without the trajectory deviating from the proposed model equations, while adherence to the model requires deviations from the observations. Thus, data assimilation faces a trade-off. In this contribution, the sensitivity of the data assimilation with respect to perturbations in the observations is identified as the parameter which controls the trade-off. A relation between the sensitivity and the out-of-sample error is established, which allows the latter to be calculated under operational conditions. A minimum out-of-sample error is proposed as a criterion to set an appropriate sensitivity and to settle the discussed trade-off. Two approaches to data assimilation are considered, namely variational data assimilation and Newtonian nudging, also known as synchronization. Numerical examples demonstrate the feasibility of the approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show that the four-dimensional variational data assimilation method (4DVar) can be interpreted as a form of Tikhonov regularization, a very familiar method for solving ill-posed inverse problems. It is known from image restoration problems that L1-norm penalty regularization recovers sharp edges in the image more accurately than Tikhonov, or L2-norm, penalty regularization. We apply this idea from stationary inverse problems to 4DVar, a dynamical inverse problem, and give examples for an L1-norm penalty approach and a mixed total variation (TV) L1–L2-norm penalty approach. For problems with model error where sharp fronts are present and the background and observation error covariances are known, the mixed TV L1–L2-norm penalty performs better than either the L1-norm method or the strong constraint 4DVar (L2-norm)method. A strength of the mixed TV L1–L2-norm regularization is that in the case where a simplified form of the background error covariance matrix is used it produces a much more accurate analysis than 4DVar. The method thus has the potential in numerical weather prediction to overcome operational problems with poorly tuned background error covariance matrices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the error dynamics for cycled data assimilation systems, such that the inverse problem of state determination is solved at tk, k = 1, 2, 3, ..., with a first guess given by the state propagated via a dynamical system model from time tk − 1 to time tk. In particular, for nonlinear dynamical systems that are Lipschitz continuous with respect to their initial states, we provide deterministic estimates for the development of the error ||ek|| := ||x(a)k − x(t)k|| between the estimated state x(a) and the true state x(t) over time. Clearly, observation error of size δ > 0 leads to an estimation error in every assimilation step. These errors can accumulate, if they are not (a) controlled in the reconstruction and (b) damped by the dynamical system under consideration. A data assimilation method is called stable, if the error in the estimate is bounded in time by some constant C. The key task of this work is to provide estimates for the error ||ek||, depending on the size δ of the observation error, the reconstruction operator Rα, the observation operator H and the Lipschitz constants K(1) and K(2) on the lower and higher modes of controlling the damping behaviour of the dynamics. We show that systems can be stabilized by choosing α sufficiently small, but the bound C will then depend on the data error δ in the form c||Rα||δ with some constant c. Since ||Rα|| → ∞ for α → 0, the constant might be large. Numerical examples for this behaviour in the nonlinear case are provided using a (low-dimensional) Lorenz '63 system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study investigates the growth of error in baroclinic waves. It is found that stable or neutral waves are particularly sensitive to errors in the initial condition. Short stable waves are mainly sensitive to phase errors and the ultra long waves to amplitude errors. Analysis simulation experiments have indicated that the amplitudes of the very long waves become usually too small in the free atmosphere, due to the sparse and very irregular distribution of upper air observations. This also applies to the four-dimensional data assimilation experiments, since the amplitudes of the very long waves are usually underpredicted. The numerical experiments reported here show that if the very long waves have these kinds of amplitude errors in the upper troposphere or lower stratosphere the error is rapidly propagated (within a day or two) to the surface and to the lower troposphere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We develop a new sparse kernel density estimator using a forward constrained regression framework, within which the nonnegative and summing-to-unity constraints of the mixing weights can easily be satisfied. Our main contribution is to derive a recursive algorithm to select significant kernels one at time based on the minimum integrated square error (MISE) criterion for both the selection of kernels and the estimation of mixing weights. The proposed approach is simple to implement and the associated computational cost is very low. Specifically, the complexity of our algorithm is in the order of the number of training data N, which is much lower than the order of N2 offered by the best existing sparse kernel density estimators. Numerical examples are employed to demonstrate that the proposed approach is effective in constructing sparse kernel density estimators with comparable accuracy to those of the classical Parzen window estimate and other existing sparse kernel density estimators.