928 resultados para Nuclear structure models and methods


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Study of K isomerism in the transfermium region around the deformed shells at N=152, Z=102, and N=162, Z=108 provides important information on the structure of heavy nuclei. Recent calculations suggest that the K-isomerism can enhance the stability of such nuclei against alpha emission and spontaneous fission. Nuclei showing K isomerism have neutron and proton orbitals with large spin projections on the symmetry axis which is due to multi quasiparticle states with aligned spins K. Quasi-particle states are formed by breaking pairs of nucleons and raising one or two nucleons in orbitals near the Fermi surface above the gap, forming high K (multi)quasi-particle states mainly at low excitation energies. Experimental examples are the recently studied two quasi-particle K isomers in 250,256-Fm, 254-No, and 270-Ds. Nuclei in this region, are produced with cross sections ranging from several nb up to µb, which are high enough for a detailed decay study. In this work, K isomerism in Sg and No isotopes was studied at the velocity filter SHIP of GSI, Darmstadt. The data were obtained by using a new data acquisition system which was developed and installed during this work. 252,254-No and 260-Sg were produced in fusion evaporation reactions of 48-Ca and 54-Cr projectiles with 206,208-Pb targets at beam energies close to the Coulomb barrier. A new K isomer was discovered in 252-No at excitation energy of 1.25 MeV, which decays to the ground state rotational band via gamma emission. It has a half-life of about 100 ms. The population of the isomeric state was about 20% of the ground state population. Detailed investigations were performed on 254-No in which two isomeric states (275 ms and 198 µs) were already discovered by R.-D. Herzberg, but due to the higher number of observed gamma decays more detailed information about the decay path of the isomers was obtained in the present work. In 260-Sg, we observed no statistically significant component with a half life different from that of the ground state. A comparison between experimental results and theoretical calculations of the single particle energies shows a fair agreement. The structure of the here studied nuclei is in particular important as single particle levels are involved which are relevant for the next shell closure expected to form the region of the shell stabilized superheavy elements at proton numbers 114, 120, or 126 and neutron number 184. K isomers, in particular, could be an ideal tool for the synthesis and study of these isotopes due to enhanced spontaneous fission life times which could result in higher alpha to spontaneous fission branching ratios and longer half lifes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heutzutage gewähren hochpräzise Massenmessungen mit Penning-Fallen tiefe Einblicke in die fundamentalen Eigenschaften der Kernmaterie. Zu diesem Zweck wird die freie Zyklotronfrequenz eines Ions bestimmt, das in einem starken, homogenen Magnetfeld gespeichert ist. Am ISOLTRAP-Massenspektrometer an ISOLDE / CERN können die Massen von kurzlebigen, radioaktiven Nukliden mit Halbwertszeiten bis zu einigen zehn ms mit einer Unsicherheit in der Größenordnung von 10^-8 bestimmt werden. ISOLTRAP besteht aus einem Radiofrequenz-Quadrupol zum akkumulieren der von ISOLDE gelieferten Ionen, sowie zwei Penning-Fallen zum säubern und zur Massenbestimmung der Ionen. Innerhalb dieser Arbeit wurden die Massen von neutronenreichen Xenon- und Radonisotopen (138-146Xe und 223-229Rn) gemessen. Für elf davon wurde zum ersten Mal die Masse direkt bestimmt; 229Rn wurde im Zuge dieses Experimentes sogar erstmalig beobachtet und seine Halbwertszeit konnte zu ungefähr 12 s bestimmt werden. Da die Masse eines Nuklids alle Wechselwirkungen innerhalb des Kerns widerspiegelt, ist sie einzigartig für jedes Nuklid. Eine dieser Wechselwirkungen, die Wechselwirkung zwischen Protonen und Neutronen, führt zum Beispiel zu Deformationen. Das Ziel dieser Arbeit ist eine Verbindung zwischen kollektiven Effekten, wie Deformationen und Doppeldifferenzen von Bindungsenergien, sogenannten deltaVpn-Werten zu finden. Insbesondere in den hier untersuchten Regionen zeigen deltaVpn-Werte ein sehr ungewöhnliches Verhalten, das sich nicht mit einfachen Argumenten deuten lässt. Eine Erklärung könnte das Auftreten von Oktupoldeformationen in diesen Gebieten sein. Nichtsdestotrotz ist eine quantitative Beschreibung von deltaVpn-Werten, die den Effekt von solchen Deformationen berücksichtigt mit modernen Theorien noch nicht möglich.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As an important Civil Engineering material, asphalt concrete (AC) is commonly used to build road surfaces, airports, and parking lots. With traditional laboratory tests and theoretical equations, it is a challenge to fully understand such a random composite material. Based on the discrete element method (DEM), this research seeks to develop and implement computer models as research approaches for improving understandings of AC microstructure-based mechanics. In this research, three categories of approaches were developed or employed to simulate microstructures of AC materials, namely the randomly-generated models, the idealized models, and image-based models. The image-based models were recommended for accurately predicting AC performance, while the other models were recommended as research tools to obtain deep insight into the AC microstructure-based mechanics. A viscoelastic micromechanical model was developed to capture viscoelastic interactions within the AC microstructure. Four types of constitutive models were built to address the four categories of interactions within an AC specimen. Each of the constitutive models consists of three parts which represent three different interaction behaviors: a stiffness model (force-displace relation), a bonding model (shear and tensile strengths), and a slip model (frictional property). Three techniques were developed to reduce the computational time for AC viscoelastic simulations. It was found that the computational time was significantly reduced to days or hours from years or months for typical three-dimensional models. Dynamic modulus and creep stiffness tests were simulated and methodologies were developed to determine the viscoelastic parameters. It was found that the DE models could successfully predict dynamic modulus, phase angles, and creep stiffness in a wide range of frequencies, temperatures, and time spans. Mineral aggregate morphology characteristics (sphericity, orientation, and angularity) were studied to investigate their impacts on AC creep stiffness. It was found that aggregate characteristics significantly impact creep stiffness. Pavement responses and pavement-vehicle interactions were investigated by simulating pavement sections under a rolling wheel. It was found that wheel acceleration, steadily moving, and deceleration significantly impact contact forces. Additionally, summary and recommendations were provided in the last chapter and part of computer programming codes wree provided in the appendixes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT ONTOLOGIES AND METHODS FOR INTEROPERABILITY OF ENGINEERING ANALYSIS MODELS (EAMS) IN AN E-DESIGN ENVIRONMENT SEPTEMBER 2007 NEELIMA KANURI, B.S., BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCES PILANI INDIA M.S., UNIVERSITY OF MASSACHUSETTS AMHERST Directed by: Professor Ian Grosse Interoperability is the ability of two or more systems to exchange and reuse information efficiently. This thesis presents new techniques for interoperating engineering tools using ontologies as the basis for representing, visualizing, reasoning about, and securely exchanging abstract engineering knowledge between software systems. The specific engineering domain that is the primary focus of this report is the modeling knowledge associated with the development of engineering analysis models (EAMs). This abstract modeling knowledge has been used to support integration of analysis and optimization tools in iSIGHT FD , a commercial engineering environment. ANSYS , a commercial FEA tool, has been wrapped as an analysis service available inside of iSIGHT-FD. Engineering analysis modeling (EAM) ontology has been developed and instantiated to form a knowledge base for representing analysis modeling knowledge. The instances of the knowledge base are the analysis models of real world applications. To illustrate how abstract modeling knowledge can be exploited for useful purposes, a cantilever I-Beam design optimization problem has been used as a test bed proof-of-concept application. Two distinct finite element models of the I-beam are available to analyze a given beam design- a beam-element finite element model with potentially lower accuracy but significantly reduced computational costs and a high fidelity, high cost, shell-element finite element model. The goal is to obtain an optimized I-beam design at minimum computational expense. An intelligent KB tool was developed and implemented in FiPER . This tool reasons about the modeling knowledge to intelligently shift between the beam and the shell element models during an optimization process to select the best analysis model for a given optimization design state. In addition to improved interoperability and design optimization, methods are developed and presented that demonstrate the ability to operate on ontological knowledge bases to perform important engineering tasks. One such method is the automatic technical report generation method which converts the modeling knowledge associated with an analysis model to a flat technical report. The second method is a secure knowledge sharing method which allocates permissions to portions of knowledge to control knowledge access and sharing. Both the methods acting together enable recipient specific fine grain controlled knowledge viewing and sharing in an engineering workflow integration environment, such as iSIGHT-FD. These methods together play a very efficient role in reducing the large scale inefficiencies existing in current product design and development cycles due to poor knowledge sharing and reuse between people and software engineering tools. This work is a significant advance in both understanding and application of integration of knowledge in a distributed engineering design framework.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nematode Caenorhabditis elegans is characterized by many features that make it highly attractive to study nuclear pore complexes (NPCs) and nucleocytoplasmic transport. NPC composition and structure are highly conserved in nematodes and being amenable to a variety of genetic manipulations, key aspects of nuclear envelope dynamics can be observed in great details during breakdown, reassembly, and interphase. In this chapter, we provide an overview of some of the most relevant modern techniques that allow researchers unfamiliar with C. elegans to embark on studies of nucleoporins in an intact organism through its development from zygote to aging adult. We focus on methods relevant to generate loss-of-function phenotypes and their analysis by advanced microscopy. Extensive references to available reagents, such as mutants, transgenic strains, and antibodies are equally useful to scientists with or without prior C. elegans or nucleoporin experience.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims. We present an inversion method based on Bayesian analysis to constrain the interior structure of terrestrial exoplanets, in the form of chemical composition of the mantle and core size. Specifically, we identify what parts of the interior structure of terrestrial exoplanets can be determined from observations of mass, radius, and stellar elemental abundances. Methods. We perform a full probabilistic inverse analysis to formally account for observational and model uncertainties and obtain confidence regions of interior structure models. This enables us to characterize how model variability depends on data and associated uncertainties. Results. We test our method on terrestrial solar system planets and find that our model predictions are consistent with independent estimates. Furthermore, we apply our method to synthetic exoplanets up to 10 Earth masses and up to 1.7 Earth radii, and to exoplanet Kepler-36b. Importantly, the inversion strategy proposed here provides a framework for understanding the level of precision required to characterize the interior of exoplanets. Conclusions. Our main conclusions are (1) observations of mass and radius are sufficient to constrain core size; (2) stellar elemental abundances (Fe, Si, Mg) are principal constraints to reduce degeneracy in interior structure models and to constrain mantle composition; (3) the inherent degeneracy in determining interior structure from mass and radius observations does not only depend on measurement accuracies, but also on the actual size and density of the exoplanet. We argue that precise observations of stellar elemental abundances are central in order to place constraints on planetary bulk composition and to reduce model degeneracy. We provide a general methodology of analyzing interior structures of exoplanets that may help to understand how interior models are distributed among star systems. The methodology we propose is sufficiently general to allow its future extension to more complex internal structures including hydrogen- and water-rich exoplanets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The intergenic spacer (IGS) region of the ribosomal DNA was cloned and sequenced in eight species within the Gibberella fujikuroi species complex with anamorphs in the genus Fusarium , a group that includes the most relevant toxigenic species. DNA sequence analyses revealed two categories of repeated elements: long repeats and short repeats of 125 and 8 bp, respectively. Long repeats were present in two copies and were conserved in all the species analyzed, whereas different numbers of short repeat elements were observed, leading to species-specific IGS sequences with different length. In Fusarium subglutinans and Fusarium nygamai , these differences seemed to be the result of duplication and deletion events. Here, we propose a model based on unequal crossing over that can explain these processes. The partial IGS sequence of 22 Fusarium proliferatum isolates was also obtained to study variation at the intraspecific level. The results revealed no differences in terms of number or pattern of repeated elements and detected frequent gene conversion events. These results suggest that the homogenization observed at the intraspecific level might not be achieved primarily by unequal crossing-over events but rather by processes associated with recombination such as gene conversion events.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bloom syndrome (BS) is a rare cancer-predisposing disorder in which the cells of affected persons have a high frequency of somatic mutation and genomic instability. BLM, the protein altered in BS, is a RecQ DNA helicase. This report shows that BLM is found in the nucleus of normal human cells in the nuclear domain 10 or promyelocytic leukemia nuclear bodies. These structures are punctate depots of proteins disrupted upon viral infection and in certain human malignancies. BLM is found primarily in nuclear domain 10 except during S phase when it colocalizes with the Werner syndrome gene product, WRN, in the nucleolus. BLM colocalizes with a select subset of telomeres in normal cells and with large telomeric clusters seen in simian virus 40-transformed normal fibroblasts. During S phase, BS cells expel micronuclei containing sites of DNA synthesis. BLM is likely to be part of a DNA surveillance mechanism operating during S phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanisms of export of RNA from the nucleus are poorly understood; however, several viral proteins modulate nucleocytoplasmic transport of mRNA. Among these are the adenoviral proteins E1B-55kDa and E4-34kDa. Late in infection, these proteins inhibit export of host transcripts and promote export of viral mRNA. To investigate the mechanism by which these proteins act, we have expressed them in Saccharomyces cerevisiae. Overexpression of either or both proteins has no obvious effect on cell growth. By contrast, overexpression of E1B-55kDa bearing a nuclear localization signal (NLS) dramatically inhibits cell growth. In this situation, the NLS-E1B-55kDa protein is localized to the nuclear periphery, fibrous material is seen in the nucleoplasm, and poly(A)+ RNA accumulates in the nucleus. Simultaneous overexpression of E4-34kDa bearing or lacking an NLS does not modify these effects. We discuss the mechanisms of selective mRNA transport.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ennek a cikknek az a célja, hogy áttekintést adjon annak a folyamatnak néhány főbb állomásáról, amit Black, Scholes és Merton opcióárazásról írt cikkei indítottak el a 70-es évek elején, és ami egyszerre forradalmasította a fejlett nyugati pénzügyi piacokat és a pénzügyi elméletet. / === / This review article compares the development of financial theory within and outside Hungary in the last three decades starting with the Black-Scholes revolution. Problems like the term structure of interest rate volatilities which is in the focus of many research internationally has not received the proper attention among the Hungarian economists. The article gives an overview of no-arbitrage pricing, the partial differential equation approach and the related numerical techniques, like the lattice methods in pricing financial derivatives. The relevant concepts of the martingal approach are overviewed. There is a special focus on the HJM framework of the interest rate development. The idea that the volatility and the correlation can be traded is a new horizon to the Hungarian capital market.