997 resultados para Nuclear models
Resumo:
Kaposiform hemangioendothelioma (KHE) and tufted angioma (TA) are rare tumors mainly occurring in early childhood. Our recent results showed that ectopic overexpression of human Prox1 gene, a lymphatic endothelial nuclear transcription factor, promoted an aggressive behavior in 2 murine models of KHE. This dramatic Prox1-induced phenotype prompted us to investigate immunohistochemical staining pattern of Prox1, podoplanin (D2-40), LYVE-1, and Prox1/CD34 as well as double immunofluorescent staining pattern of LYVE-1/CD31 in KHE and TA, compared with other pediatric vascular tumors. For this purpose, we examined 75 vascular lesions: KHE (n=18), TA (n=13), infantile hemangioma (n=13), pyogenic granuloma (n=18), and granulation tissue (n=13). Overall, KHE and TA shared an identical endothelial immunophenotype: the neoplastic spindle cells were Prox1, podoplanin, LYVE-1, CD31, and CD34, whereas endothelial cells within glomeruloid foci were Prox1, podoplanin, LYVE-1, CD31, and CD34. The lesional cells of all infantile hemangiomas and pyogenic granulomas were negative for Prox1 in the presence of positive internal control. These findings provide immunophenotypic evidence to support a preexisting notion that KHE and TA are closely related, if not identical. Overall, our results show, for the first time, that Prox1 is an immunohistochemical biomarker helpful in confirming the diagnosis of KHE/TA and in distinguishing it from infantile hemangioma and pyogenic granuloma.
Resumo:
Abstract Peroxisome Proliferator-Activated Receptors (PPARs) form a family of three nuclear receptors regulating important cellular and metabolic functions. PPARs control gene expression by directly binding to target promoters as heterodimers with the Retinoid X Receptor (RXR), and their transcriptional activity is enhanced upon activation by natural or pharmacological ligands. The binding of PPAR/RXR heterodimers on target promoters allows the anchoring of a series of coactivators and corepressors involved in promoter remodeling and the recruitment of the transcription machinery. The transcriptional output finally depends on a complex interplay between (i) the respective expression levels of PPARs, RXRs and of other nuclear receptors competing for DNA binding and RXR recruitment, (ii) the availability and the nature of PPAR and RXR ligands, (iii) the expression levels and the nature of the different coactivators and corepressors and (iv) the sequence and the epigenetic status of the promoter. Understanding how all these factors and signals integrate and fine-tune transcription remains a challenge but is necessary to understand the specificity of the physiological functions regulated by PPARs. The work presented herein focuses on the molecular mechanisms of PPAR action and aims at understanding how the interactions and mobility of the receptor modulate transcription in the physiological context of a living cell: Such observations in vivo rely on the use of engineered fluorescent protein chimeras and require the development and the application of complementary imaging techniques such as Fluorescence Recovery After Photobleaching (FRAP), Fluorescence Resonance Energy Transfer (FRET) and Fluorescence Correlation Spectroscopy (FCS). Using such techniques, PPARs are shown to reside solely in the nucleus where they are constitutively associated with RXR but transcriptional activation by ligand binding -does not promote the formation of sub-nuclear structures as observed with other nuclear receptors. In addition, the engagement of unliganded PPARs in large complexes of cofactors in living cells provides a molecular basis for their ligand-independent activity. Ligand binding reduces receptor diffusion by promoting the recruitment of coactivators which further enlarge the size of PPAR complexes to acquire full transcriptional competence. Using these molecular approaches, we deciphered the molecular mechanisms through which phthalates, a class of pollutants from the plastic industry, interfere with PPARγ signaling. Mono-ethyl-hexyl-phthalate (MEHP) binding induces the recruitment of a specific subset of cofactors and translates into the expression of a specific subset of target genes, the transcriptional output being strongly conditioned by the differentiation status of the cell. This selective PPARγ modulation induces limited adipogenic effects in cellular models while exposure to phthalates in animal models leads to protective effects on glucose tolerance and diet-induced obesity. These results demonstrate that phthalates influence lipid and carbohydrate metabolism through complex mechanisms which most likely involve PPARγ but also probably PPARα and PPARß, Altogether, the molecular and physiological demonstration of the interference of pollutants with PPAR action outlines an important role of chemical exposure in metabolic regulations. Résumé Les PPARs (Peroxisome Proliferator-Activated Receptors) forment une famille de récepteurs nucléaires qui régulent des fonctions cellulaires et métaboliques importantes. Les PPARs contrôlent l'expression des gènes en se liant directement à leurs promoteurs sous forme d'hétérodimères avec les récepteurs RXR (Retinoid X Receptor), et leur activité transcriptionnelle est stimulée par la liaison de ligands naturels ou pharmacologiques. L'association des hétérodimères PPAR/RXR avec les promoteurs des gènes cibles permet le recrutement de coactivateurs et de corépresseurs qui vont permettre le remodelage de la chromatine et le recrutement de la machinerie transcriptionnelle. Les actions transcriptionnelles du récepteur dépendent toutefois d'interactions complexes qui sont régulées par (i) le niveau d'expression des PPARs, des RXRs et d'autres récepteurs nucléaires entrant en compétition pour la liaison à l'ADN et l'association avec RXR, (ii) la disponibilité et la nature de ligands de PPAR et de RXR, (iii) les niveaux d'expression et la nature des différents coactivateurs et corépresseurs et (iv) la séquence et le marquage épigénétique des promoteurs. La compréhension des mécanismes qui permettent d'intégrer ces aspects pour assurer une régulation fine de l'activité transcriptionnelle est un défi qu'il est nécessaire de relever pour comprendre la spécificité des fonctions physiologiques régulées par les PPARs. Ce travail concerne l'étude des mécanismes d'action moléculaire des PPARs et vise à mieux comprendre comment les interactions du récepteur avec d'autres protéines ainsi que la mobilité de ce dernier régulent son activité transcriptionnelle dans le contexte physiologique des cellules vivantes. De telles observations reposent sur l'emploi de protéines fusionnées à des protéines fluorescentes ainsi que sur le développement et l'utilisation de techniques d'imagerie complémentaires telles que le FRAP (Fluorescence Recovery After Photobleaching), le FRET (Fluorescence Resonance Energy Transfer) ou la FCS (Fluorescence Corrélation Spectroscopy). En appliquant ces méthodes, nous avons pu montrer que les PPARs résident toujours dans le noyau où ils sont associés de manière constitutive à RXR, mais que l'ajout de ligand n'induit pas la formation de structures sub-nucléaires comme cela a pu être décrit pour d'autres récepteurs nucléaires. De plus, les PPARs sont engagés dans de larges complexes protéiques de cofacteurs en absence de ligand, ce qui procure une explication moléculaire à leur activité ligand-indépendante. La liaison du ligand réduit la vitesse de diffusion du récepteur en induisant le recrutement de coactivateurs qui augmente encore plus la taille des complexes afin d'acquérir un potentiel d'activation maximal. En utilisant ces approches moléculaires, nous avons pu caractériser les mécanismes permettant aux phtalates, une classe de polluants provenant de l'industrie plastique, d'interférer avec PPARγ. La liaison du mono-ethyl-hexyl-phtalate (NERF) à PPARγ induit un recrutement sélectif de cofacteurs, se traduisant par l'induction spécifique d'un sous-ensemble de gènes qui varie en fonction du niveau de différentiation cellulaire. La modulation sélective de PPARγ par le MEHP provoque une adipogenèse modérée dans des modèles cellulaires alors que l'exposition de modèles animaux aux phtalates induit des effets bénéfiques sur la tolérance au glucose et sur le développement de l'obésité. Toutefois, les phtalates ont une action complexe sur le métabolisme glucido-lipidique en faisant intervenir PPARγ mais aussi probablement PPARα et PPARß. Cette démonstration moléculaire et physiologique de l'interférence des polluants avec les récepteurs nucléaires PPAR souligne un rôle important de l'exposition à de tels composés dans les régulations métaboliques.
Resumo:
Analyses of mitochondrial DNA (mtDNA) control region polymorphism and of variation at 10 nuclear microsatellite loci were used to investigate the mechanisms and genetic consequences of postglacial expansion of Myotis myotis in Europe. Initial sampling consisted of 480 bats genotyped in 24 nursery colonies arranged along a transect of approximately 3000 km. The phylogeographical survey based on mtDNA sequences revealed the existence of major genetic subdivisions across this area, with several suture zones between haplogroups. Such zones of secondary contact were found in the Alps and Rhodopes, whereas other potential barriers to gene flow, like the Pyrenees, did not coincide with genetic discontinuities. Areas of population admixture increased locally the genetic diversity of colonies, which confounded the northward decrease in nucleotide diversity predicted using classical models of postglacial range expansion. However, when analyses were restricted to a subset of 15 nurseries originating from a single presumed glacial refugium, mtDNA polymorphism did indeed support a northwards decrease in diversity. Populations were also highly structured (PhiST = 0.384). Conversely, the same subset of colonies showed no significant latitudinal decrease in microsatellite diversity and much less population structure (FST = 0.010), but pairwise genetic differentiation at these nuclear markers was strongly correlated with increasing geographical distance. Together, this evidence suggests that alleles carried via male bats have maintained enough nuclear gene flow to counteract the effects of recurrent bottlenecks generally associated with recolonization processes. As females are highly philopatric, we argue that the maternally transmitted mtDNA marker better reflects the situation of past, historical gene flow, whereas current levels of gene flow are better reflected by microsatellite markers.
Resumo:
The aim of ORAMED work package 4 was the optimization of the medical practices in nuclear medicine during the preparation of radiopharmaceuticals and their administration to the patient. During the project a wide campaign of measurements was performed in the nuclear medicine departments of the collaborating hospitals. Such data were intrinsically characterized by a large variability that depended on the procedure, the employed techniques and the operator's habits. That variability could easily hide some important parameter, for example, the effectiveness of the adopted shielding (for syringe and vial) or the effect of the distances from the source. This information is necessary for a valuable optimization purpose of radiation protection. To this end a sensitivity analysis was carried out through Monte Carlo simulations employing voxel models, representing operator's hand during the considered practices. Such analysis allowed understanding at what extent the range of personal dose equivalent evaluated during measurements can be considered intrinsically related to the procedures. Furthermore, with the Monte Carlo simulations it was possible to study the appropriateness of the shielding usually utilized in these practices.
Resumo:
Using numerical simulations, we investigate the underlying physical effects responsible for the overall organization of chromosomal territories in interphase nuclei. In particular, we address the following three questions: (i) why are chromosomal territories with relatively high transcriptional activity on average, closer to the centre of cell's nucleus than those with the lower activity? (ii) Why are actively transcribed genes usually located at the periphery of their chromosomal territories? (iii) Why are pair-wise contacts between active and inactive genes less frequent than those involving only active or only inactive genes? We show that transcription factories-mediated contacts between active genes belonging to different chromosomal territories are instrumental for all these features of nuclear organization to emerge spontaneously due to entropic effects arising when chromatin fibres are highly crowded.
Resumo:
Although non-melanoma skin cancer (NMSC) is the most common human cancer and its incidence continues to rise worldwide, the mechanisms underlying its development remain incompletely understood. Here, we unveil a cascade of events involving peroxisome proliferator-activated receptor (PPAR) β/δ and the oncogene Src, which promotes the development of ultraviolet (UV)-induced skin cancer in mice. UV-induced PPARβ/δ activity, which directly stimulated Src expression, increased Src kinase activity and enhanced the EGFR/Erk1/2 signalling pathway, resulting in increased epithelial-to-mesenchymal transition (EMT) marker expression. Consistent with these observations, PPARβ/δ-null mice developed fewer and smaller skin tumours, and a PPARβ/δ antagonist prevented UV-dependent Src stimulation. Furthermore, the expression of PPARβ/δ positively correlated with the expression of SRC and EMT markers in human skin squamous cell carcinoma (SCC), and critically, linear models applied to several human epithelial cancers revealed an interaction between PPARβ/δ and SRC and TGFβ1 transcriptional levels. Taken together, these observations motivate the future evaluation of PPARβ/δ modulators to attenuate the development of several epithelial cancers.
Resumo:
Colon carcinoma multicellular spheroids were incubated in vitro with radiolabelled MAbs. The more rapid penetration of fragments as compared to intact MAbs was clearly demonstrated. For the study of antibody localization in tumors in vivo, the model of nude mice with ligated kidneys was used. Although very artificial, this model allowed to demonstrate that, without urinary excretion, Fab fragments accumulated more rapidly into the tumor than intact MAbs and disappeared faster from the blood. This difference was less striking for F(ab')2 fragments. In the liver a decreased accumulation of both types of fragments as compared to intact MAbs was observed. Concerning radioimmunotherapy we think that Fab fragments are not useful because of their too short half-life in the circulation and in tumor and because they will probably be too toxic for the kidneys. Intact MAbs and F(ab')2 fragments have each their advantages. Intact MAbs show highest tumor accumulation in mice without ligated kidney, however, they remain mostly on the periphery of tumor nodules, as shown by autoradiography. F(ab')2 fragments have been found to penetrate deeper into the tumor and to accumulate less in the liver. It might be therefore an advantage to combine intact MAbs with F(ab')2 fragments, so that in the tumor two different regions could be attacked whereas in normal tissues toxicity could be distributed to different organs such as to the liver with intact MAbs and to the kidney with F(ab')2 fragments.
Resumo:
INTRODUCTION: The cell surface endopeptidase CD10 (neutral endopeptidase) and nuclear factor-κB (NF-κB) have been independently associated with prostate cancer (PC) progression. We investigated the correlations between these two factors and their prognostic relevance in terms of biochemical (prostate-specific antigen, PSA) relapse after radical prostatectomy (RP) for localized PC. PATIENTS AND METHODS: The immunohistochemical expression of CD10 and NF-κB in samples from 70 patients who underwent RP for localized PC was correlated with the preoperative PSA level, Gleason score, pathological stage and time to PSA failure. RESULTS: CD10 expression was inversely associated with NF-κB expression (p < 0.001), stage (p = 0.03) and grade (p = 0.003), whereas NF-κB was directly related with stage (p = 0.006) and grade (p = 0.002). The median time to PSA failure was 56 months. CD10 and NF-κB were directly (p < 0.001) and inversely (p < 0.001) correlated with biochemical recurrence-free survival, respectively. CD10 expression (p = 0.022) and stage (p = 0.018) were independently associated with time to biochemical recurrence. CONCLUSION: Low CD10 expression is an adverse prognostic factor for biochemical relapse after RP in localized PC, which is also associated with high NF-κB expression. Decreased CD10 expression which would lead to increased neuropeptide signaling and NF-κB activity may be present in a subset of early PCs.
Resumo:
Delta isobar components in the nuclear many-body wave function are investigated for the deuteron, light nuclei (16O), and infinite nuclear matter within the framework of the coupled-cluster theory. The predictions derived for various realistic models of the baryon-baryon interaction are compared to each other. These include local (V28) and nonlocal meson exchange potentials (Bonn2000) but also a model recently derived by the Salamanca group accounting for quark degrees of freedom. The characteristic differences which are obtained for the NDelta and Delta Delta correlation functions are related to the approximation made in deriving the matrix elements for the baryon-baryon interaction.
Resumo:
In fluid dynamical models the freeze-out of particles across a three-dimensional space-time hypersurface is discussed. The calculation of final momentum distribution of emitted particles is described for freeze-out surfaces, with both spacelike and timelike normals, taking into account conservation laws across the freeze-out discontinuity.
Resumo:
We study the effects of strict conservation laws and the problem of negative contributions to final momentum distribution during the freeze-out through 3-dimensional hypersurfaces with spacelike normal. We study some suggested solutions for this problem, and demonstrate it in one example.
Resumo:
Glioblastoma multiforme (GBM) is the most common and lethal of all gliomas. The current standard of care includes surgery followed by concomitant radiation and chemotherapy with the DNA alkylating agent temozolomide (TMZ). O⁶-methylguanine-DNA methyltransferase (MGMT) repairs the most cytotoxic of lesions generated by TMZ, O⁶-methylguanine. Methylation of the MGMT promoter in GBM correlates with increased therapeutic sensitivity to alkylating agent therapy. However, several aspects of TMZ sensitivity are not explained by MGMT promoter methylation. Here, we investigated our hypothesis that the base excision repair enzyme alkylpurine-DNA-N-glycosylase (APNG), which repairs the cytotoxic lesions N³-methyladenine and N⁷-methylguanine, may contribute to TMZ resistance. Silencing of APNG in established and primary TMZ-resistant GBM cell lines endogenously expressing MGMT and APNG attenuated repair of TMZ-induced DNA damage and enhanced apoptosis. Reintroducing expression of APNG in TMZ-sensitive GBM lines conferred resistance to TMZ in vitro and in orthotopic xenograft mouse models. In addition, resistance was enhanced with coexpression of MGMT. Evaluation of APNG protein levels in several clinical datasets demonstrated that in patients, high nuclear APNG expression correlated with poorer overall survival compared with patients lacking APNG expression. Loss of APNG expression in a subset of patients was also associated with increased APNG promoter methylation. Collectively, our data demonstrate that APNG contributes to TMZ resistance in GBM and may be useful in the diagnosis and treatment of the disease.