907 resultados para Northward shift


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A geochemical and paleontological reconstruction of paleoproductivity, upwelling intensity and sea surface temperature (SST) off central Chile at 35°S (GeoB3359-3) reveals marked changes from the Last Glacial Maximum (LGM) through the Early Holocene. Surface-water productivity was determined by the interaction between the atmospheric (the Southern Westerlies) and oceanographic (the Antarctic Circumpolar Current, ACC) systems from the LGM through early Termination I (TI). The northward shift of the climate zones during the LGM brought the ACC, as the main macronutrient source, closer to the GeoB3359-3, SST lowered, and surface water productivity and accumulation rates of biogenic components enhanced. With the poleward return of the Southern Westerlies and the ACC, the subtropical high-pressure system became the dominant atmospheric component southward till 35°S during the late TI and Early Holocene and caused surface water productivity to increase through enhanced upwelling.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Deep sea drilling on four seamounts in the Emperor Seamount chain revealed that Paleogene shallow-water carbonate sediments of the "bryozoan-algal" facies crown the basalt edifices. According to the biofacies model of Schlanger and Konishi (1966, 1975), this bryozoan- algal assemblage suggests that the seamounts formed in cooler, more northerly waters than those presently occupied by the island of Hawaii; i.e., the paleolatitudes of formation were greater than 20 °N. Moving southward toward the youngest member of the seamount chain, a facies gradient indicative of warmer waters was observed. This gradient is interpreted as a reflection of a northward shift in isotherms during the time span in which the seamounts were progressively formed (Savin et al., 1975). On all seamounts, sedimentation at the drilling sites occurred in a high-energy environment with water depths of approximately 20 meters. Early-stage carbonate diagenesis began in the phreatic zone in the presence of meteoric water, but proceeded after subsidence of the seamounts into intermediate sea waters, where the bulk, stable isotopic composition was determined. The subsidence into intermediate waters was rapid, and permitted establishment of an isotopic equilibrium which, like the facies gradient, reflects the northward shift in isotherms during the Paleogene. Calcite and zeolite cements comprise the later-stage diagenesis, and originated from solutions arising from the hydrolysis of the underlying basalt. In conclusion, the results of this study of the shallow-water carbonate sediments are not inconsistent with a paleolatitude of formation for Suiko Seamount (Site 433) of 26.9 ±3.5 °N, as determined by paleomagnetic measurements (Kono, 1980).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We examine the possibility that glacial increase in the areal extent of reducing sediments might have changed the oceanic Cd inventory, thereby decoupling Cd from PO4. We suggest that the precipitation of Cd-sulfide in suboxic sediments is the single largest sink in the oceanic Cd budget and that the accumulation of authigenic Cd and U is tightly coupled to the organic carbon flux into the seafloor. Sediments from the Subantarctic Ocean and the Cape Basin (South Atlantic), where oxic conditions currently prevail, show high accumulation rates of authigenic Cd and U during glacial intervals associated with increased accumulation of organic carbon. These elemental enrichments attest to more reducing conditions in glacial sediments in response to an increased flux of organic carbon. A third core, overlain by Circumpolar Deep Water (CPDW) as are the other two cores but located south of the Antarctic Polar Front, shows an approximately inverse pattern to the Subantarctic record. The contrasting patterns to the north and south of the Antarctic Polar Front suggest that higher accumulation rates of Cd and U in Subantarctic sediments were driven primarily by increased productivity. This proposal is consistent with the hypothesis of glacial stage northward migration of the Antarctic Polar Front and its associated belt of high siliceous productivity. However, the increase in authigenic Cd and U glacial accumulation rates is higher than expected simply from a northward shift of the polar fronts, suggesting greater partitioning of organic carbon into the sediments during glacial intervals. Lower oxygen content of CPDW and higher organic carbon to biogenic silica rain rate ratio during glacial stages are possible causes. Higher glacial productivity in the Cape Basin record very likely reflects enhanced coastal up-welling in response to increased wind speeds. We suggest that higher productivity might have doubled the areal extent of suboxic sediments during the last glacial maximum. However, our calculations suggest low sensitivity of seawater Cd concentrations to glacial doubling of the extent of reducing sediments. The model suggests that during the last 250 kyr seawater Cd concentrations fluctuated only slightly, between high levels (about 0.66 nmol/kg) on glacial initiations and reaching lowest values (about 0.57 nmol/kg) during glacial maxima. The estimated 5% lower Cd content at the last glacial maximum relative to modern levels (0.60 nmol/kg) cannot explain the discordance between Cd and delta13C, such as observed in the Southern Ocean. This low sensitivity is consistent with foraminiferal data, suggesting minimal change in the glacial Cd mean oceanic content.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

All holes drilled during Leg 114 contained ice-rafted debris. Analysis of samples from Hole 699A, Site 701, and Hole 704A yielded a nearly complete history of ice-rafting episodes. The first influx of ice-rafted debris at Site 699, on the northeastern slope of the Northeast Georgia Rise, occurred at a depth of 69.94 m below seafloor (mbsf) in sediments of early Miocene age (23.54 Ma). This material is of the same type as later ice-rafted debris, but represents only a small percentage of the coarse fraction. Significant ice-rafting episodes occurred during Chron 5. Minor amounts of ice-rafted debris first reached Site 701, on the western flank of the Mid-Atlantic Ridge (8.78 Ma at 200.92 mbsf), and more arrived in the late Miocene (5.88 Ma). The first significant quantity of sand and gravel appeared at a depth of 107.76 mbsf (4.42 Ma). Site 704, on the southern part of the Meteor Rise, received very little or no ice-rafted debris prior to 2.46 Ma. At this time, however, the greatest influx of ice-rafted debris occurred at this site. This time of maximum ice rafting correlates reasonably well with influxes of ice-rafted debris at Sites 701 (2.24 Ma) and 699 (2.38 Ma), in consideration of sample spacing at these two sites. These peaks of ice rafting may be Sirius till equivalents, if the proposed Pliocene age of Sirius tills can be confirmed. After about 1.67 Ma, the apparent mass-accumulation rate of the sediments at Site 704 declined, but with major fluctuations. This decline may be the result of a decrease in the rate of delivery of detritus from Antarctica due to reduced erosive power of the glaciers or a northward shift in the Polar Front Zone, a change in the path taken by the icebergs, or any combination of these factors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The development of an orbitally tuned time scale for the ODP leg 138 sites provides biostratigraphers a very high resolution chronostratigraphic framework. With this framework we are better able to define which of the first and last appearances of species appear to be synchronous. In addition, the geographic distribution of sites provides the means with which the detailed spatial patterns of invasion of new species and the extinction of older species can be mapped. These maps not only provide information on the process of evolution, migration, and extinction, they can also be related to water mass distributions and near-surface circulation of the ocean. Of 39 radiolarian events studied at 11 sites in the eastern equatorial Pacific, 28 were found to have a minimum range in their estimated age that exceeded 0.15 m.y. The temporal pattern of first and last appearances of these diachronous events have coherent spatial patterns that indicate shifts in the areas of high oceanographic gradients over the past 10 Ma. These changes in the locations of high gradient regions suggest that the South Equatorial Current (SEC) was north of its present position prior to approximately 7 Ma. There was a southward shift in the northern boundary of this current between approximately 6 and 7 Ma, and the development of a relatively strong gradient between the northeastern and northwestern sites. Between approximately 3.7 and 3.4 Ma, there was a very slight northward shift in the northern boundary of the SEC and the steep gradients between the northeastern and northwestern sites may have disappeared. This change is thought to be associated with the closing of the Isthmus of Panama. The temporal-spatial patterns of diachronous events younger than 3.4 Ma are consistent with patterns of circulation in the modern ocean.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Calcareous nannofossil assemblages have been investigated at Ocean Drilling Program (ODP) Site 1090 located in the modern Subantarctic Zone, through the Pleistocene Marine Isotope Stages (MIS) 34-29, between 1150 and 1000 ka. A previously developed age model and new biostratigraphic constraints provide a reliable chronological framework for the studied section and allow correlation with other records. Two relevant biostratigraphic events have been identified: the First Common Occurrence of Reticulofenestra asanoi, distinctly correlated to MIS 31-32; the re-entry of medium Gephyrocapsa at MIS 29, unexpectedly similar to what was observed at low latitude sites. The composition of the calcareous nannofossil assemblage permits identification of three intervals (I-III). Intervals I and III, correlated to MIS 34-32 and MIS 30-29 respectively, are identified as characteristic of water masses located south of the Subtropical Front and reflecting the southern border of Subantarctic Zone, at the transition with the Polar Front Zone. This evidence is consistent with the hypothesis of a northward shift of the frontal system in the early Pleistocene with respect to the present position and therefore a northernmost location of the Subantarctic Front. During interval II, which is correlated to MIS 31, calcareous nannofossil assemblages display the most significant change, characterized by a distinct increase of Syracosphaera spp. and Helicosphaera carteri, lasting about 20 ky. An integrated analysis of calcareous nannofossil abundances and few mineralogical proxies suggests that during interval II, Site 1090 experienced the influence of subtropical waters, possibly related to a southward migration of the Subtropical Front, coupled with an expansion of the warmer Agulhas Current at the core location. This pronounced warming event is associated to a minimum in the austral summer insolation. The present results provide a broader framework on the Mid-Pleistocene dynamic of the ocean frontal system in the Atlantic sector of the Southern Ocean, as well as additional evidence on the variability of the Indian-Atlantic ocean exchange.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A high-resolution multiproxy study performed on a marine record from SE Pacific off southern South America was used to reconstruct past regional environmental changes and their relation to global climate, particularly to El Niño/Southern Oscillation (ENSO) phenomenon during the last 2200 years. Our results suggest a sustained northward shift in the position of the zonal systems, i.e. the Southern Westerly Wind belt and the Antarctic Circumpolar Current, which occurred between 1300 and 750 yr BP. The synchrony of the latitudinal shift with cooling in Antarctica and reduced ENSO activity observed in several marine and terrestrial archives across South America suggests a causal link between ENSO and the proposed displacement of the zonal systems. This shift might have acted as a positive feedback to more La Niña-like conditions between 1300 and 750 yr BP by steepening the hemispheric and tropical Pacific zonal sea surface temperature gradient. This scenario further suggests different boundary conditions for ENSO before 1300 and after 750 yr BP.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The distribution of pollen in marine sediments is used to reconstruct pathways of terrigenous input to the oceans and provides a record of vegetation change on adjacent continents. The wind transport routes of aeolian pollen is comprehensively illustrated by clusters of trajectories. Isobaric, 4-day backward trajectories are calculated using the modelled wind-field of ECHAM3, and are clustered on a seasonal basis to estimate the main pathways of aeolian particles to sites of marine cores in the south-eastern Atlantic. Trajectories and clusters based on the modelled wind-field of the Last Glacial Maximum hardly differ from those of the present-day. Trajectory clusters show three regional, and two seasonal patterns, determining the pathways of aeolian pollen transport into the south-eastern Atlantic ocean. Mainly, transport out of the continent occurs during austral fall and winter, when easterly and south-easterly winds prevail. South of 25°S, winds blow mostly from the west and southwest, and aeolian terrestrial input is very low. Generally, a good latitudinal correspondence exists between the distribution patterns of pollen in marine surface sediments and the occurrence of the source plants on the adjacent continent. The northern Angola Basin receives pollen and spores from the Congolian and Zambezian forests mainly through river discharge. The Zambezian vegetation zone is the main source area for wind-blown pollen in sediments of the Angola Basin, while the semi-desert and desert areas are the main sources for pollen in sediments of the Walvis Basin and on the Walvis Ridge. A transect of six marine pollen records along the south-western African coast indicates considerable changes in the vegetation of southern Africa between glacial and interglacial periods. Important changes in the vegetation are the decline of forests in equatorial Africa and the north of southern Africa and a northward shift of winter rain vegetation along the western escarpment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Major plastered drift sequences were imaged using high-resolution multichannel seismics during R/V Meteor cruises M63/1 and M75/3 south of the Mozambique Channel along the continental margin of Mozambique off the Limpopo River. Detailed seismic-stratigraphic analyses enabled the reconstruction of the onset and development of the modern, discontinuous, eddy-dominated Mozambique Current. Major drift sequences can first be identified during the Early Miocene. Consistent with earlier findings, a progressive northward shift of the depocenter indicates that, on a geological timescale, a steady but variable Mozambique Current existed from this time onward. It can furthermore be shown that, during the Early/Middle Miocene, a coast-parallel current was established off the Limpopo River as part of a lee eddy system driven by the Mozambique Current. Modern sedimentation is controlled by the interplay between slope morphology and the lee eddy system, resulting in upwelling of Antarctic Intermediate Water. Drift accumulations at larger depths are related to the reworking of sediment by deep-reaching eddies that migrate southward, forming the Mozambique Current and eventually merging with the Agulhas Current.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We explore the impact of a latitudinal shift in the westerly wind belt over the Southern Ocean on the Atlantic meridional overturning circulation (AMOC) and on the carbon cycle for Last Glacial Maximum background conditions using a state-of-the-art ocean general circulation model. We find that a southward (northward) shift in the westerly winds leads to an intensification (weakening) of no more than 10% of the AMOC. This response of the ocean physics to shifting winds agrees with other studies starting from preindustrial background climate, but the responsible processes are different. In our setup changes in AMOC seemed to be more pulled by upwelling in the south than pushed by downwelling in the north, opposite to what previous studies with different background climate are suggesting. The net effects of the changes in ocean circulation lead to a rise in atmospheric pCO2 of less than 10 atm for both northward and southward shift in the winds. For northward shifted winds the zone of upwelling of carbon- and nutrient-rich waters in the Southern Ocean is expanded, leading to more CO2 outgassing to the atmosphere but also to an enhanced biological pump in the subpolar region. For southward shifted winds the upwelling region contracts around Antarctica, leading to less nutrient export northward and thus a weakening of the biological pump. These model results do not support the idea that shifts in the westerly wind belt play a dominant role in coupling atmospheric CO2 rise and Antarctic temperature during deglaciation suggested by the ice core data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tese de doutoramento, Biologia (Biologia Marinha e Aquacultura), Universidade de Lisboa, Faculdade de Ciências, 2016

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The stable isotope study of monospecific planktonic foraminifer samples recovered at Sites 541 and 543 during Deep Sea Drilling Project Leg 78A indicates a warming during the early Pliocene about 4.7 to 4.3 Ma. The changes in the late Pliocene oxygen isotope record around 2.9 to 2.7 Ma coincide with changes in the circulation pattern resulting from the closure of the Panama seaway and the beginning of the Northern Hemisphere glaciation. The Pleistocene record is characterized by 0.5 to 1.0 per mil fluctuations in the d18O record. These fluctuations reflect salinity changes, rather than temperature changes, as indicated by Globigerinoides ruber and G. sacculifer abundances. The salinity changes may be explained by a drifting of (1) the highly saline Central Water Mass of the southern Sargasso Sea, and (2) lower-salinity ocean water displaced by the northward shift of the Intertropical Convergence Zone into the Caribbean region during cooler intervals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present-day condition of bipolar glaciation characterized by rapid and large climate fluctuations began at the end of the Pliocene with the intensification of the Northern Hemisphere continental glaciations. The global cooling steps of the late Pliocene have been documented in numerous studies of Ocean Drilling Program (ODP) sites from the Northern Hemisphere. However, the interactions between oceans and between land and ocean during these cooling steps are poorly known. In particular, data from the Southern Hemisphere are lacking. Therefore I investigated the pollen of ODP Site 1082 in the southeast Atlantic Ocean in order to obtain a high-resolution record of vegetation change in Namibia between 3.4 and 1.8 Ma. Four phases of vegetation development are inferred that are connected to global climate change. (1) Before 3 Ma, extensive, rather open grass-rich savannahs with mopane trees existed in Namibia, but the extension of desert and semidesert vegetation was still restricted. (2) Increase of winter rainfall dependent Renosterveld-like vegetation occurred between 3.1 and 2.2 Ma connected to strong advection of polar waters along the Namibian coast and a northward shift of the Polar Front Zone in the Southern Ocean. (3) Climatically induced fluctuations became stronger between 2.7 and 2.2 Ma and semiarid areas extended during glacial periods probably as the result of an increased pole-equator thermal gradient and consequently globally enhanced atmospheric circulation. (4) Aridification and climatic variability further increased after 2.2 Ma, when the Polar Front Zone migrated southward and the influence of Atlantic moisture brought by the westerlies to southern Africa declined. It is concluded that the positions of the frontal systems in the Southern Ocean which determine the locations of the high-pressure cells over the South Atlantic and the southern Indian Ocean have a strong influence on the climate of southern Africa in contrast to the climate of northwest and central Africa, which is dominated by the Saharan low-pressure cell.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pleistocene summer sea-surface temperatures (SSST) have been reconstructed on a composite core section recovered in the Subantarctic Zone of the Southern Ocean from planktonic foraminifers applying the Modern Analog Technique. The composite consists of Core PS2489-2 and the sections recovered at ODP Site 1090, and documents the last 1.83 Ma. Three distinct climatic periods can be identified that mirror the Pleistocene development of the Southern Ocean hydrography. Cold climatic conditions prevailed at 43°S during glacial as well as during interglacial periods during the early Pleistocene (1.83-0.87 Ma), indicating a northward shift of isotherms that characterize the present-day Polar Front Zone by about 7° of latitude. Evidence shows a strong linkage between Southern Ocean and low latitude climate during that interval time. Between the Mid-Pleistocene Revolution (ca. 0.9 Ma) and the Mid-Brunhes Event (ca. 0.4 Ma), we observe higher amplitude fluctuations in the SSST between glacial and interglacial periods, corresponding to the temperature range between the present Polar Front and Subantarctic Front. These climatic variations have been related to changes in the northern hemisphere ice sheets. The past 0.4 Ma are characterized by strong SSST variations, of up to 8°C, between glacials and interglacials. Only during the climatic optima (stages 11.3, 9.3, 7.5, 7.1, 5.5, and the early Holocene), SSST exceeded present SSST at the core locality (10.2°C). Although the carbonate dissolution record exhibits high variability during the Pleistocene, it can be shown that SSST estimates were not significantly biased. The Mid-Brunhes dissolution cycle as well as the Mid-Pleistocene enhanced carbonate preservation appear to belong to a global long-term variability in carbonate preservation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Diatom assemblages from ODP Leg 177 sites 1093, 1094 and core PS2089-2, from the present Antarctic sea ice free zone and close to the Polar Front, were analyzed in order to reconstruct the climate development around the Mid-Brunhes Event 400 000 yr ago, as reflected by summer sea surface temperature (SSST) and sea ice distribution. Dense sample spacing allows a mean temporal resolution during Marine Isotope Stage (MIS) 11 (423-362 ka) of 300-400 yr. SSST values were estimated from diatom assemblages using a transfer function technique. The distribution pattern of sea ice diatoms indicates that the present-day ice free Antarctic Zone was seasonally covered by sea ice during the cold MIS 12 and MIS 10. These glacial periods are characterized by sea ice fluctuations with a periodicity of 3 and 1.85 kyr, suggesting the occurrence of Dansgaard-Oeschger-style millennial-scale oscillations in the Atlantic sector of the Southern Ocean during the glacial stages MIS 12 and MIS 10. Termination V (MIS 12/11) is characterized by a distinct temperature increase of 4-6°C, intersected especially at the southern site 1094 and core PS2089-2 by two distinct cooling events reminiscent of the Younger Dryas, which are associated with a northward shift of the winter sea ice edge in the Antarctic Zone. The SSST record is characterized by distinct temperature intervals bounded by stepwise, rapid changes. Maximum temperatures were reached during Termination V and the early MIS 11, exceeding modern values by 2°C over a period of 8 kyr. This pattern indicates a very early response of the Southern Ocean to global climate on Milankovitch-driven climate variability. The SSST optimum is marked by millennial-scale temperature oscillations with an amplitude of ca. 1°C and periodicities of ca. 1.85 and 1.47 kyr, probably reflecting changes in the ocean circulation system. The SSSTs during the MIS 11 temperature optimum do not exceed values obtained from other interglacial optima such as the early periods of MIS 5 or MIS 1 from the Antarctic Zone. However, the total duration of the warmest period was distinctly longer than observed from other interglacials. The comparison of the South Atlantic climate record with a high-resolution record from ODP Leg 162, site 980from the North Atlantic shows a strong conformity in the climate development during the studied time interval.