119 resultados para Nonperturbative
Resumo:
An attosecond pump-probe scheme that combines the use of a free-electron laser pulse with an ultrashort pulse is applied in order to explore the ultrafast excitation dynamics in Ne. We describe the multielectron dynamics using a new nonperturbative time-dependent R-matrix theory. This theory enables the interaction of ultrashort light fields with multielectron atoms and atomic ions to be determined from first principles. By probing the emission of an inner 2s electron from Ne we are also able to study the bound state population dynamics during the free-electron laser pulse.
Resumo:
We describe an ab initio nonperturbative time-dependent R-matrix theory for ultrafast atomic processes. This theory enables investigations of the interaction of few-femtosecond and -attosecond pulse lasers with complex multielectron atoms and atomic ions. A derivation and analysis of the basic equations are given, which propagate the atomic wave function in the presence of the laser field forward in time in the internal and external R-matrix regions. To verify the accuracy of the approach, we investigate two-photon ionization of Ne irradiated by an intense laser pulse and compare current results with those obtained using the R-matrix Floquet method and an alternative time-dependent method. We also verify the capability of the current approach by applying it to the study of two-dimensional momentum distributions of electrons ejected from Ne due to irradiation by a sequence of 2 as light pulses in the presence of a 780 nm laser field.
Resumo:
Positron scattering and annihilation on noble-gas atoms is studied ab initio using many-body theory methods for positron energies below the positronium formation threshold. We show that in this energy range, the many-body theory yields accurate numerical results and provides a near-complete understanding of the positron–noble-gas atom system. It accounts for positron-atom and electron-positron correlations, including the polarization of the atom by the positron and the nonperturbative effect of virtual positronium formation. These correlations have a large influence on the scattering dynamics and result in a strong enhancement of the annihilation rates compared to the independent-particle mean-field description. Computed elastic scattering cross sections are found to be in good agreement with recent experimental results and Kohn variational and convergent close-coupling calculations. The calculated values of the annihilation rate parameter Zeff (effective number of electrons participating in annihilation) rise steeply along the sequence of noble-gas atoms due to the increasing strength of the correlation effects, and agree well with experimental data.
Resumo:
The time-dependent close-coupling method is used to calculate electron-impact excitation cross sections for the Li(2s)--{\textgreater}Li(nl) and Li(2p)--{\textgreater}Li(nl) transitions at incident energies just above the ionization threshold. The implementation of the time-dependent close-coupling method on a nonuniform lattice allows the study of continuum-coupling effects in excitations to high principal quantum number, i.e., n{\textless}=10. Good agreement is found with R-matrix with pseudostates calculations, which also include continuum-coupling effects, for excitations to low principal quantum number, i.e., n{\textless}=4. Poor agreement is found with standard distorted-wave calculations for excitations to all principal quantum numbers, with differences still at the 50% level for n=10. We are able to give guidance as to the accuracy expected in the n3 extrapolation of nonperturbative close-coupling calculations of low n cross sections and rate coefficients.
Resumo:
We report on a nonperturbative R-matrix with PseudoStates (RMPS) calculation for the electron-impact ionization cross section of the ground state of Al2+. We include both the direct ionization of the 3s and 2p subshells and the indirect ionization from the 2p subshell. This calculation, thus, includes extra decay channels for the indirect-ionization process not included in previous RMPS calculations. This lowers the total-ionization cross section, resulting in closer agreement with the most recent experimental measurements. This calculation also shows better agreement with the position and height of the resonant-excitation double autoionization features seen in the experiment.
Resumo:
Inelastic electron scattering from light atomic species is of fundamental importance and has significant applications in fusion-plasma modeling. Therefore, it is of interest to apply advanced nonperturbative, close-coupling methods to the determination of electron-impact excitation for these atoms. Here we present the results of R matrix with pseudostate (RMPS) calculations of electron-impact excitation cross sections through the n=4 terms in Be, Be+, Be2+, and Be3+. In order to determine the effects of coupling of the bound states to the target continuum in these species, we compare the RMPS results with those from standard R-matrix calculations. In addition, we have performed time-dependent close-coupling calculations for excitation from the ground and the metastable terms of Be+ and the metastable term of Be3+. In general, these results are found to agree with those from our RMPS calculations. The full set of data resulting from this work is now available on the Oak Ridge National Laboratory Controlled Fusion Atomic Data Center web site, and will be employed for collisional-radiative modeling of Be in magnetically confined plasmas.
Resumo:
Electron-impact ionization cross sections for argon are calculated using both non-perturbative R-matrix with pseudo-states (RMPS) and perturbative distorted-wave methods. At twice the ionization potential, the 3p(61)S ground-term cross section from a distorted-wave calculation is found to be a factor of 4 above crossed-beams experimental measurements, while with the inclusion of term-dependent continuum effects in the distorted-wave method, the perturbative cross section still remains almost a factor of 2 above experiment. In the case of ionization from the metastable 3p(5)4s(3)P term, the distorted-wave ionization cross section is also higher than the experimental cross section. On the other hand, the ground-term cross section determined from a nonperturbative RMPS calculation that includes 27 LS spectroscopic terms and another 282 LS pseudo-state terms to represent the high Rydberg states, and the target continuum is found to be in excellent agreement with experimental measurements, while the RMPS result is below the experimental cross section for ionization from the metastable term. We conclude that both continuum term dependence and interchannel coupling effects, which are included in the RMPS method, are important for ionization from the ground term, and interchannel coupling is also significant for ionization from the metastable term
Resumo:
Accurate knowledge of the electron-impact ionization of the B atom is urgently needed in current fusion plasma experiments to help design ITER wall components. Since no atomic measurements exist, nonperturba- tive time-dependent close-coupling (TDCC) calculations are carried out to accurately determine the direct ionization cross sections of the outer two subshells of B. Perturbative distorted-wave and semiempirical binary encounter calculations are found to yield cross sections from 26% lower to an order of magnitude higher than the current TDCC results. Unlike almost all neutral atoms, large excitation-autoionization contributions are found for the B atom. Nonperturbative R matrix with pseudostates (RMPS) calculations are also carried out to accurately determine the total ionization cross section of B. Previous 60 LS-term RMPS calculations are found to yield cross sections up to 40% higher than the current more extensive 476 LS-term RMPS results
Resumo:
Electron-impact ionization cross sections are calculated for the ground and metastable states of B+. Com- parisons between perturbative distorted-wave and nonperturbative close-coupling calculations find reductions in the direct ionization cross sections due to long-range electron correlation effects of approximately 10% for the ground state and approximately 15% for the metastable state. Previous crossed-beams experiments, with a metastable to ground ratio of between 50% and 90%, are found to be in reasonable agreement with metastable state close-coupling results. New crossed-beams experiments, with a metastable to ground ratio of only 9%, are found to be in reasonable agreement with ground state close-coupling results. Combined with previous work on neutral B and B2+, the nonperturbative close-coupling calculations provide accurate ionization cross sections for the study of edge plasmas in controlled fusion research.
Resumo:
Electron-impact ionization cross sections are calculated for the ground and metastable states of C+. Com- parisons between perturbative distorted-wave and nonperturbative time-dependent close-coupling calculations find reductions in the peak direct ionization cross sections due to electron coupling effects of approximately 5% for ground state C+ and approximately 15% for metastable state C+. Fairly small excitation-autoionization contributions are found for ground state C+, while larger excitation-autoionization contributions are found for metastable state C+. Comparisons between perturbative distorted-wave and nonperturbative R-matrix with pseudostates calculations find reductions in the peak total ionization cross sections due to electron coupling effects of approximately 15–20 % for ground state C+ and approximately 25–35 % for metastable state C+. Finally, comparisons between theory and experiment find that present and previous C+ crossed-beam measure- ments are in excellent agreement with ground state nonperturbative R-matrix with pseudostates calculations for total ionization cross sections. Combined with previous non-perturbative calculations for C, C2+, and C3+, accurate ionization cross sections and rate coefficients are now available for the ground and metastable states of all carbon ion stages.
Resumo:
The sensitivity of lithium plasma models to the underlying atomic data is investigated. Collisional-radiative modeling is carried out with both the Los Alamos and ADAS suite of codes. The effects of plane-wave Born, distorted-wave, and nonperturbative R -matrix with pseudostates and time-dependent close-coupling electron impact atomic data on derived plasma quantities such as the ionization balance and radiated power are studied. Density and temperature regimes are identified where nonperturbative excitation and ionization rate coefficients must be used. The electron temperature and density ranges investigated were 0.2 eV<or = T(e) <or =90 eV and 10(10) cm(-3) <or = N(e) <or = 10(14) cm(-3).
Studies on Pseudoscalar Meson Bound States and Semileptonic Decays in a Relativistic Potential Model
Resumo:
In this thesis quark-antiquark bound states are considered using a relativistic two-body equation for Dirac particles. The mass spectrum of mesons includes bound states involving two heavy quarks or one heavy and one light quark. In order to analyse these states within a unified formalism, it is desirable to have a two-fermion equation that limits to one body Dirac equation with a static interaction for the light quark when the other particle's mass tends to infinity. A suitable two-body equation has been developed by Mandelzweig and Wallace. This equation is solved in momentum space and is used to describe the complete spectrum of mesons. The potential used in this work contains a short range one-gluon exchange interaction and a long range linear confining and constant potential terms. This model is used to investigate the decay processes of heavy mesons. Semileptonic decays are more tractable since there is no final state interactions between the leptons and hadrons that would otherwise complicate the situation. Studies on B and D meson decays are helpful to understand the nonperturbative strong interactions of heavy mesons, which in turn is useful to extract the details of weak interaction process. Calculation of form factors of these semileptonic decays of pseudo scalar mesons are also presented.
Resumo:
In classical field theory, the ordinary potential V is an energy density for that state in which the field assumes the value ¢. In quantum field theory, the effective potential is the expectation value of the energy density for which the expectation value of the field is ¢o. As a result, if V has several local minima, it is only the absolute minimum that corresponds to the true ground state of the theory. Perturbation theory remains to this day the main analytical tool in the study of Quantum Field Theory. However, since perturbation theory is unable to uncover the whole rich structure of Quantum Field Theory, it is desirable to have some method which, on one hand, must go beyond both perturbation theory and classical approximation in the points where these fail, and at that time, be sufficiently simple that analytical calculations could be performed in its framework During the last decade a nonperturbative variational method called Gaussian effective potential, has been discussed widely together with several applications. This concept was described as a means of formalizing our intuitive understanding of zero-point fluctuation effects in quantum mechanics in a way that carries over directly to field theory.
Resumo:
We use QCD sum rules to test the nature of the recently observed mesons Y(4260), Y(4350) and Y(4660), assumed to be exotic four-quark (c (c) over barq (q) over bar) or (c (c) over bars (s) over bar) states with J(PC)= 1(--). We work at leading order in alpha(s), consider the contributions of higher dimension condensates and keep terms which are linear in the strange quark mass m(s). We find for the (c (c) over bars (s) over bar) state a mass in m(Y) = (4.65 +/- 0.10) GeV which is compatible with the experimental candidate Y (4660), while for the (c (c) over barq (q) over bar) state we find a mass in m(Y) = (4.49 +/- 0.11) GeV, which is still consistent with the mass of the experimental candidate Y(4350). With the tetraquark structure we are working we cannot explain the Y(4260) as a tetraquark state. We also consider molecular D(s0)(D) over bar (s)* and D(0)(D) over bar* states. For the D(s0)(D) over bar (s)* molecular state we get m(Ds0 (D) over bars*) = (4.42 +/- 0.10) GeV which is consistent, considering the errors, with the mass of the meson Y(4350) and for the D(0)(D) over bar* molecular state we get m(D0 (D) over bar*) = (4.27 +/- 0.10) GeV in excellent agreement with the mass of the meson Y(4260). (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
At very high energies we expect that the hadronic cross sections satisfy the Froissart bound, which is a well-established property of the strong interactions. In this energy regime we also expect the formation of the Color Glass Condensate, characterized by gluon saturation and a typical momentum scale: the saturation scale Q(s). In this paper we show that if a saturation window exists between the nonperturbative and perturbative regimes of Quantum Chromodynamics (QCD), the total cross sections satisfy the Froissart bound. Furthermore, we show that our approach allows us to described the high energy experimental data on pp/p (p) over bar total cross sections.