996 resultados para Nonlinear absorption coefficient
Resumo:
The optical limiting behavior and nonlinear optical properties of antimony and lead oxyhalide glasses were discussed. The large nonlinear absorption coefficients which range from 11 to 20 cm/GW was determined using standard Z-scan technique. The photodarkening in the samples were observed which suggested that they can also be useful for inscribing Bragg gratings using green lasers of moderate power.
Resumo:
The nonlinear index of refraction (n(2)) and the two-photon absorption coefficient (beta) of water-based ferrofluids made of magnetite nanocrystals of different sizes and with different coatings have been measured through the Z-scan technique, with ultrashort (femtoseconds) laser pulses. Their third-order susceptibility is calculated from the values of n(2) and beta. The influence of different particles' coatings and sizes on these nonlinear optical properties are investigated. The values of n(2) and beta depend more significantly on the nanoparticles' size than on the particular coating. We observe a decrease of beta as the nanoparticles' diameters decrease, although the optical gap is found to be the same for all samples. The results are interpreted considering modifications in the electronic orbital shape due to the particles' nanosize effect.
Resumo:
We report measurements of the nonlinear (NL) refractive index n(2) of lead-germanium films (LGFs) containing Cu and Cu(2)O nanoparticles (NPs). The thermally managed eclipse Z-scan technique with 150 fs pulses from a laser operating at 800 nm was used. The NL refractive index measured, n(2)=6.3x10(-12) cm(2)/W has electronic origin and the NL absorption coefficient alpha(2) is smaller than 660 cm/GW. The figure of merit n(2)/lambda alpha(2) is enhanced by more than two orders of magnitude in comparison with the result for the LGFs without the copper based NPs. (C) 2008 American Institute of Physics.
Resumo:
The magnetic resonance imaging contrast agent, the so-called Endorem (TM) colloidal suspension on the basis of superparamagnetic iron oxide nanoparticles (mean diameter of 5.5 nm) coated with dextran, were characterized on the basis of several measurement techniques to determine the parameters of their most important physical and chemical properties. It is assumed that each nanoparticle is consisted of Fe(3)O(4) monodomain and it was observed that its oxidation to gamma-Fe(2)O(3) occurs at 253.1 degrees C. The Mossbauer spectroscopy have shown a superparamagnetic behavior of the magnetic nanoparticles. The Magnetic Resonance results show an increase of the relaxation times T(1), T(2), and T(2)* with decreasing concentration of iron oxide nanoparticles. The relaxation effects of SPIONs contrast agents are influenced by their local concentration as well as the applied field strength and the environment in which these agents interact with surrounding protons. The proton relaxation rates presented a linear behavior with concentration. The measured values of thermooptic coefficient partial derivative n/partial derivative T, thermal conductivity K, optical birefringence Delta n(0), nonlinear refractive index n(2), nonlinear absorption beta` and third-order nonlinear susceptibility vertical bar chi((3))vertical bar are also reported.
Resumo:
Ultrasonic absorption in polymer gel dosimeters was investigated. An ultrasonic interferometer was used to study the frequency (f) dependence of the absorption coefficient (alpha) in a polyacrylamide gel dosimeter (PAG) in the frequency range 5-20 MHz. The frequency dependence of ultrasonic absorption deviated from that of an ideal viscous fluid. The presence of relaxation mechanisms was evidenced by the frequency dependence of alpha/f(2) and the dispersion in ultrasonic velocity. It was concluded that absorption in polymer gel dosimeters is due to a number of relaxation processes which may include polymer-solvent interactions as well as relaxation due to motion of polymer side groups. The dependence of ultrasonic absorption on absorbed dose and formulation was also investigated in polymer gel dosimeters as a function of pH and chemical composition. Changes in dosimeter pH and chemical composition resulted in a variation in ultrasonic dose response curves. The observed dependence on pH was considered to be due to pH induced modifications in the radiation yield while changes in chemical composition resulted in differences in polymerisation kinetics. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The optical absorption of hydrogenated amorphous carbon films (a‐C:H) was measured by spectroscopic ellipsometry. The a‐C:H films were deposited at different substrate temperatures by rf‐plasma of methane. A volume distribution of graphitic cluster size was assumed to reproduce the experimental spectra of the absorption coefficient. The changes in the absorption coefficient and the optical gap, induced by deposition temperature, have been interpreted in terms of changes in the graphitic cluster size of the network. The increase in the deposition temperature produces an increase in the size of the graphitic clusters.
Resumo:
In this article, we present the spectral and nonlinear optical properties of ZnO–CdS nanocomposites prepared by colloidal chemical synthesis. The optical band gap (Eg) of the material is tunable between 2.62 and 3.84 eV. The emission peaks of ZnO–CdS nanocomposites change from 385 to 520 nm almost in proportion to changes in Eg. It is possible to obtain a desired luminescence color from UV to green by simply adjusting the composition. The nonlinear optical response of these samples is studied by using nanosecond laser pulses from a tunable laser at the excitonic resonance and off-resonance wavelengths. The nonlinear response is wavelength dependent, and switching from saturable absorption (SA) to reverse SA (RSA) has been observed for samples as the excitation wavelength changes from the excitonic resonance to off-resonance wavelengths. Such a changeover in the sign of the nonlinearity of ZnO–CdS nanocomposites is related to the interplay of exciton bleach and optical limiting mechanisms. The ZnO–CdS nanocomposites show self-defocusing nonlinearity and good nonlinear absorption behavior at off-resonant wavelengths. The nonlinear refractive index and the nonlinear absorption increase with increasing CdS volume fraction at 532 nm. The observed nonlinear absorption is attributed to two photon absorption followed by weak free carrier absorption. The enhancement of the third-order nonlinearity in the composites can be attributed to the concentration of exciton oscillator strength. This study is important in identifying the spectral range and composition over which the nonlinear material acts as a RSA based optical limiter. ZnO–CdS is a potential nanocomposite material for the tunable light emission and for the development of nonlinear optical devices with a relatively small limiting threshold.
Resumo:
Optical absorption studies of free base and rare earth incorporated phthalocyanine doped borate glass matrix are reported for the first lime. The absorption spectra recorded in the UV- VIS region show two well defined absorption bands of phthalocyanine (Pc) molecule, namely the Soret band (B) and the Q band. The Q band always shows its characteristic splitting in all the doped glass matrices and the intensities of these components are found to vary from one Pc to another. Some of the important optical parameters, namely optical absorption coefficient (a), molar extinction coefficient (ε), absorption cross section (σa), oscillator strength (f), electric dipole strength (q2), absorption half bandwidth (Δλ) of the principal optical transitions have also been evaluated. Moreover, the spectral dependence of refractive index (n) and thereby the optical dielectric constant (ε) on wavelength yielded values of carrier concentration to effective mass ratio (N/m*) of the phthalocyanine molecule in the present glassy systems. Optical band gap (Eg) and width of the band tail (Et) are computed and their variations among the prepared samples are also discussed.
Resumo:
In this Letter we present the spectral and nonlinear optical properties of ZnO–Ag nanocomposites prepared by colloidal chemical synthesis. Obvious enhancement of ultraviolet (UV) emission of the samples is observed and the strongest UV emission is over three times than that of pure ZnO. These nanocomposites show self-defocusing nonlinearity and good nonlinear absorption behaviour which increases with increasing Ag volume fraction. The observed nonlinear absorption is explained through two photon absorption followed by free carrier absorption. ZnO–Ag is a potential nanocomposite material for the UV light emission and for the development of nonlinear optical devices with a relatively small limiting threshold.
Resumo:
Optical absorption studies of phthalocyanines (Pc-s) in borate glass matrix have been reported for the first time. Measurements have been done corresponding to photon energies between 1.1 and 6.2 eV for free base, manganese, iron, nickel, molybdenum, cobalt and copper phthalocyanines. Several new discrete transitions are observed in the UV–vis region of the spectra in addition to a strong continuum component of absorption in the IR region. Values of some of the important optical constants viz. absorption coefficient (α), molar extinction coefficient (ε), absorption cross-section (σa), band width (Δλ), electric dipole strength (q2) and oscillator strength (f) for the relevant electronic transitions are also presented. All the data reported for Pc-s in the new matrix have been compared with those corresponding to solution, vapor and thin film media.
Resumo:
We present the spectral and nonlinear optical properties of ZnO-SiO2 nanocomposites prepared by colloidal chemical synthesis. Obvious enhancement of ultraviolet (UV) emission of the samples is observed, and the strongest UV emission of a typical ZnO-SiO2 nanocomposite is over three times stronger than that of pure ZnO. The nonlinearity of the silica colloid is low, and its nonlinear response can be improved by making composites with ZnO. These nanocomposites show self-defocusing nonlinearity and good nonlinear absorption behavior. The observed nonlinear absorption is explained through two photon absorption followed by weak free carrier absorption and nonlinear scattering. The nonlinear refractive index and the nonlinear absorption increase with increasing ZnO volume fraction and can be attributed to the enhancement of exciton oscillator strength. ZnO-SiO2 is a potential nanocomposite material for the UV light emission and for the development of nonlinear optical devices with a relatively small limiting threshold.
Resumo:
In this article, we present the spectral and nonlinear optical properties of ZnOCu nanocomposites prepared by colloidal chemical synthesis. The emission consisted of two peaks. The 385-nm ultraviolet (UV) peak is attributed to ZnO and the 550-nm visible peak is attributed to Cu nanocolloids. Obvious enhancement of UV and visible emission of the samples is observed and the strongest UV emission of a typical ZnOCu nanocomposite is over three times stronger than that of pure ZnO. Cu acts as a sensitizer and the enhancement of UV emission are caused by excitons formed at the interface between Cu and ZnO. As the volume fraction of Cu increases beyond a particular value, the intensity of the UV peak decreases while the intensity of the visible peak increases, and the strongest visible emission of a typical ZnOCu nanocomposite is over ten times stronger than that of pure Cu. The emission mechanism is discussed. Nonlinear optical response of these samples is studied using nanosecond laser pulses from a tunable laser in the wavelength range of 450650 nm, which includes the surface plasmon absorption (SPA) band. The nonlinear response is wavelength dependent and switching from reverse saturable absorption (RSA) to saturable absorption (SA) has been observed for Cu nanocolloids as the excitation wavelength changes from the low absorption window region to higher absorption regime near the SPA band. However, ZnO colloids and ZnOCu nanocomposites exhibit induced absorption at this wavelength. Such a changeover in the sign of the nonlinearity of ZnOCu nanocomposites, with respect to Cu nanocolloids, is related to the interplay of plasmon band bleach and optical limiting mechanisms. The SA again changes back to RSA when we move over to the infrared region. The ZnOCu nanocomposites show self-defocusing nonlinearity and good nonlinear absorption behavior. The nonlinear refractive index and the nonlinear absorption increases with increasing Cu volume fraction at 532 nm. The observed nonlinear absorption is explained through two-photon absorption followed by weak free-carrier absorption and interband absorption mechanisms. This study is important in identifying the spectral range and composition over which the nonlinear material acts as a RSA-based optical limiter. ZnOCu is a potential nanocomposite material for the light emission and for the development of nonlinear optical devices with a relatively small limiting threshold.
Resumo:
Nonlinear optics has been a rapidly growing field in recent decades since the invention of lasers. The systematic progress in the laser technology increases our efficiency in the generation and control of coherent optical radiations. Nonlinear optics is based on the study ofeffects and phenomena related to the interaction of intense coherent light radiation with matter. Compared to other light sources laser radiation can provide high directionality, high monochromaticiry, high brightness and high photon degeneracy. At such a very intense incident beam, the matter responds in a nonlinear manner to the incident radiation fields, which endows the media :1 characteristic to change the refractive index or absorption coe fflcient of the media or the wavelength, or the frequency of the incident electromagnetic waves. This thesis encompasses the fabrication of nonlinear optical devices based on semiconductor and metal nanostructures. The presented work focus on the experimental and theoretical discussions on nonlinear optical effects especially nonlinear absorption and refraction exhibitted by metal and semiconductor nanostructures
Resumo:
A microscopic theory is presented for the photoacoustic effect induced in solids by x-ray absorption. The photoacoustic effect results from the thermalization of the excited Auger electrons and photoelectrons. We explain the dependence of the photoacoustic signal S on photon energy and the proportionality to the x-ray absorption coefficient in agreement with recent experiments on Cu. Results are presented for the dependence of S on photon energy, sample thickness, and the electronic structure of the absorbing solid.
Resumo:
The absorption spectra of phytoplankton in the visible domain hold implicit information on the phytoplankton community structure. Here we use this information to retrieve quantitative information on phytoplankton size structure by developing a novel method to compute the exponent of an assumed power-law for their particle-size spectrum. This quantity, in combination with total chlorophyll-a concentration, can be used to estimate the fractional concentration of chlorophyll in any arbitrarily-defined size class of phytoplankton. We further define and derive expressions for two distinct measures of cell size of mixed populations, namely, the average spherical diameter of a bio-optically equivalent homogeneous population of cells of equal size, and the average equivalent spherical diameter of a population of cells that follow a power-law particle-size distribution. The method relies on measurements of two quantities of a phytoplankton sample: the concentration of chlorophyll-a, which is an operational index of phytoplankton biomass, and the total absorption coefficient of phytoplankton in the red peak of visible spectrum at 676 nm. A sensitivity analysis confirms that the relative errors in the estimates of the exponent of particle size spectra are reasonably low. The exponents of phytoplankton size spectra, estimated for a large set of in situ data from a variety of oceanic environments (~ 2400 samples), are within a reasonable range; and the estimated fractions of chlorophyll in pico-, nano- and micro-phytoplankton are generally consistent with those obtained by an independent, indirect method based on diagnostic pigments determined using high-performance liquid chromatography. The estimates of cell size for in situ samples dominated by different phytoplankton types (diatoms, prymnesiophytes, Prochlorococcus, other cyanobacteria and green algae) yield nominal sizes consistent with the taxonomic classification. To estimate the same quantities from satellite-derived ocean-colour data, we combine our method with algorithms for obtaining inherent optical properties from remote sensing. The spatial distribution of the size-spectrum exponent and the chlorophyll fractions of pico-, nano- and micro-phytoplankton estimated from satellite remote sensing are in agreement with the current understanding of the biogeography of phytoplankton functional types in the global oceans. This study contributes to our understanding of the distribution and time evolution of phytoplankton size structure in the global oceans.