793 resultados para Non-parametric
Resumo:
his paper considers a problem of identification for a high dimensional nonlinear non-parametric system when only a limited data set is available. The algorithms are proposed for this purpose which exploit the relationship between the input variables and the output and further the inter-dependence of input variables so that the importance of the input variables can be established. A key to these algorithms is the non-parametric two stage input selection algorithm.
Resumo:
Bridge construction responds to the need for environmentally friendly design of motorways and facilitates the passage through sensitive natural areas and the bypassing of urban areas. However, according to numerous research studies, bridge construction presents substantial budget overruns. Therefore, it is necessary early in the planning process for the decision makers to have reliable estimates of the final cost based on previously constructed projects. At the same time, the current European financial crisis reduces the available capital for investments and financial institutions are even less willing to finance transportation infrastructure. Consequently, it is even more necessary today to estimate the budget of high-cost construction projects -such as road bridges- with reasonable accuracy, in order for the state funds to be invested with lower risk and the projects to be designed with the highest possible efficiency. In this paper, a Bill-of-Quantities (BoQ) estimation tool for road bridges is developed in order to support the decisions made at the preliminary planning and design stages of highways. Specifically, a Feed-Forward Artificial Neural Network (ANN) with a hidden layer of 10 neurons is trained to predict the superstructure material quantities (concrete, pre-stressed steel and reinforcing steel) using the width of the deck, the adjusted length of span or cantilever and the type of the bridge as input variables. The training dataset includes actual data from 68 recently constructed concrete motorway bridges in Greece. According to the relevant metrics, the developed model captures very well the complex interrelations in the dataset and demonstrates strong generalisation capability. Furthermore, it outperforms the linear regression models developed for the same dataset. Therefore, the proposed cost estimation model stands as a useful and reliable tool for the construction industry as it enables planners to reach informed decisions for technical and economic planning of concrete bridge projects from their early implementation stages.
Resumo:
Modern medical imaging techniques enable the acquisition of in vivo high resolution images of the vascular system. Most common methods for the detection of vessels in these images, such as multiscale Hessian-based operators and matched filters, rely on the assumption that at each voxel there is a single cylinder. Such an assumption is clearly violated at the multitude of branching points that are easily observed in all, but the Most focused vascular image studies. In this paper, we propose a novel method for detecting vessels in medical images that relaxes this single cylinder assumption. We directly exploit local neighborhood intensities and extract characteristics of the local intensity profile (in a spherical polar coordinate system) which we term as the polar neighborhood intensity profile. We present a new method to capture the common properties shared by polar neighborhood intensity profiles for all the types of vascular points belonging to the vascular system. The new method enables us to detect vessels even near complex extreme points, including branching points. Our method demonstrates improved performance over standard methods on both 2D synthetic images and 3D animal and clinical vascular images, particularly close to vessel branching regions. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This paper deals with the estimation and testing of conditional duration models by looking at the density and baseline hazard rate functions. More precisely, we foeus on the distance between the parametric density (or hazard rate) function implied by the duration process and its non-parametric estimate. Asymptotic justification is derived using the functional delta method for fixed and gamma kernels, whereas finite sample properties are investigated through Monte Carlo simulations. Finally, we show the practical usefulness of such testing procedures by carrying out an empirical assessment of whether autoregressive conditional duration models are appropriate to oIs for modelling price durations of stocks traded at the New York Stock Exchange.
Resumo:
This paper gives a first step toward a methodology to quantify the influences of regulation on short-run earnings dynamics. It also provides evidence on the patterns of wage adjustment adopted during the recent high inflationary experience in Brazil.The large variety of official wage indexation rules adopted in Brazil during the recent years combined with the availability of monthly surveys on labor markets makes the Brazilian case a good laboratory to test how regulation affects earnings dynamics. In particular, the combination of large sample sizes with the possibility of following the same worker through short periods of time allows to estimate the cross-sectional distribution of longitudinal statistics based on observed earnings (e.g., monthly and annual rates of change).The empirical strategy adopted here is to compare the distributions of longitudinal statistics extracted from actual earnings data with simulations generated from minimum adjustment requirements imposed by the Brazilian Wage Law. The analysis provides statistics on how binding were wage regulation schemes. The visual analysis of the distribution of wage adjustments proves useful to highlight stylized facts that may guide future empirical work.
Resumo:
We present the results of a new, non-parametric method to reconstruct the Galactic dark matter profile directly from observations. Using the latest kinematic data to track the total gravitational potential and the observed distribution of stars and gas to set the baryonic component, we infer the dark matter contribution to the circular velocity across the Galaxy. The radial derivative of this dynamical contribution is then estimated to extract the dark matter profile. The innovative feature of our approach is that it makes no assumption on the functional form or shape of the profile, thus allowing for a clean determination with no theoretical bias. We illustrate the power of the method by constraining the spherical dark matter profile between 2.5 and 25 kpc away from the Galactic center. The results show that the proposed method, free of widely used assumptions, can already be applied to pinpoint the dark matter distribution in the Milky Way with competitive accuracy, and paves the way for future developments.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Wir betrachten Systeme von endlich vielen Partikeln, wobei die Partikel sich unabhängig voneinander gemäß eindimensionaler Diffusionen [dX_t = b(X_t),dt + sigma(X_t),dW_t] bewegen. Die Partikel sterben mit positionsabhängigen Raten und hinterlassen eine zufällige Anzahl an Nachkommen, die sich gemäß eines Übergangskerns im Raum verteilen. Zudem immigrieren neue Partikel mit einer konstanten Rate. Ein Prozess mit diesen Eigenschaften wird Verzweigungsprozess mit Immigration genannt. Beobachten wir einen solchen Prozess zu diskreten Zeitpunkten, so ist zunächst nicht offensichtlich, welche diskret beobachteten Punkte zu welchem Pfad gehören. Daher entwickeln wir einen Algorithmus, um den zugrundeliegenden Pfad zu rekonstruieren. Mit Hilfe dieses Algorithmus konstruieren wir einen nichtparametrischen Schätzer für den quadrierten Diffusionskoeffizienten $sigma^2(cdot),$ wobei die Konstruktion im Wesentlichen auf dem Auffüllen eines klassischen Regressionsschemas beruht. Wir beweisen Konsistenz und einen zentralen Grenzwertsatz.
Resumo:
This paper examines the mean-reverting property of real exchange rates. Earlier studies have generally not been able to reject the null hypothesis of a unit-root in real exchange rates, especially for the post-Bretton Woods floating period. The results imply that long-run purchasing power parity does not hold. More recent studies, especially those using panel unit-root tests, have found more favorable results, however. But, Karlsson and Löthgren (2000) and others have recently pointed out several potential pitfalls of panel unit-root tests. Thus, the panel unit-root test results are suggestive, but they are far from conclusive. Moreover, consistent individual country time series evidence that supports long-run purchasing power parity continues to be scarce. In this paper, we test for long memory using Lo's (1991) modified rescaled range test, and the rescaled variance test of Giraitis, Kokoszka, Leipus, and Teyssière (2003). Our testing procedure provides a non-parametric alternative to the parametric tests commonly used in this literature. Our data set consists of monthly observations from April 1973 to April 2001 of the G-7 countries in the OECD. Our two tests find conflicting results when we use U.S. dollar real exchange rates. However, when non-U.S. dollar real exchange rates are used, we find only two cases out of fifteen where the null hypothesis of an unit-root with short-term dependence can be rejected in favor of the alternative hypothesis of long-term dependence using the modified rescaled range test, and only one case when using the rescaled variance test. Our results therefore provide a contrast to the recent favorable panel unit-root test results.
Resumo:
Here, a novel and efficient moving object detection strategy by non-parametric modeling is presented. Whereas the foreground is modeled by combining color and spatial information, the background model is constructed exclusively with color information, thus resulting in a great reduction of the computational and memory requirements. The estimation of the background and foreground covariance matrices, allows us to obtain compact moving regions while the number of false detections is reduced. Additionally, the application of a tracking strategy provides a priori knowledge about the spatial position of the moving objects, which improves the performance of the Bayesian classifier