992 resultados para Non-enzymatic browning


Relevância:

80.00% 80.00%

Publicador:

Resumo:

'Aurora-1' peaches establishes an interesting alternative as a minimally processed product, due to its characteristics like flavor, color, smell, and also because of its handling resistance. However, it has a short shelf life after a fresh-cut due to enzymatic browning and stone cavity collapse. The main purpose of this research was to test the additive with antioxidant effect to prevent browning in minimally processed 'Aurora-1' peaches. The minimal processing consists of washing, sanitizing, peelings and fruit stone extraction. After that, longitudinal cuts were made to obtain eight segments per fruit. The slices were immersed into the following treatment solutions: control (immersion in 2% ascorbic acid); 2% ascorbic acid + 2% calcium chloride; 1% sodium isoascorbate; 1% citric acid; 1% L-cysteine hydrochloride. The products were placed into rigid polystyrene trays branded MEIWA M-54, covered with 14 µm PVC film (OmnifilmTM) and kept in cold storage at 3ºC ± 2ºC and 65% RH for twelve days, and evaluated each three days. Appraised variables were appearance, soluble solids, titratable acidity, soluble carbohydrates and reducing sugars, total and soluble pectin, ascorbic acid, and peroxidase and polyphenol oxidase enzyme activity. L-cysteine gave to the minimally processed products a shelf life of twelve days, limmited by off-flavor. The treatment with ascorbic acid was efficient to maintainthe ascorbic acid content, with a shelf-life of nine days, limited by enzymatic browning.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Though Free Radicals is one of the most frequently explored scientific subjects in mass communication media, the topic is absent of many Biochemistry introductory courses, especially those in which the students do not have a good chemical background. To overcome this contradictory situation we have developed a software treating this topic in a very simple way. The software is divided in four sections: (1) definition and description of free radicals, (2) production pathways, (3) mechanism of action and (4) enzymatic and non enzymatic protection. The instructional capacity of the software has been both qualitative and quantitatively evaluated through its application in undergraduate courses. The software is available in the INTERNET at the site: http://www.unicamp.br/ib/bioquimica/ensino.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A simple and didactic experiment was developed for image monitoring of the browning of fruit tissues caused by the enzyme polyphenol oxidase. The procedure, easy and inexpensive, is a valuable tool to teach and demonstrate the redox reaction between the enzyme and the natural polyphenols. To obtain the browning percentage for apple, pear and banana, digital photographs were employed, and the images were analyzed by means of Monte Carlo methods and digital analysis programs. The effects of several experimental conditions were studied, such as pH, light, temperature and the presence of oxygen or anti-oxidants. It was observed that each fruit presented a different condition that better minimized the oxidation process. The absence of oxygen and the application of a bissulphite solution were sufficient to keep the quality of all fruits tested.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Over the last decade, evidences have been shown that the wood biodegradation by fungi is not only a result of the action of their enzymatic machinery but also of various low molecular weight non-enzymatic compounds, especially in fungi that promote brown and white decay, which in nature are the major wood decaying microorganisms. The present review focuses on the recent theories involving these low molecular weight compounds that act direct or synergistically with lignocellulolytic enzymes to attack the wood main macromolecular constituents, their relevance as potential degradative systems, in the overall wood biodegradation, and also outlines their potential biotechnological applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The biodegradation of lignocellulosic materials is an important natural process because it is responsible for the carbon recycling. When induced under controlled conditions, this process can be used for technological applications such as biopulping, biobleaching of cellulosic pulps, pre-treatment for subsequent saccharification and cellulosic-ethanol production, and increase of the digestibility in agroindustrial residues used for animal feed. In the present work, the enzymatic and non-enzymatic mechanisms involved in the biodegradation of lignocellulosic materials by fungi were reviewed. Furthermore, the technological applications of these extracellular metabolites are presented and discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sunlight is part of our everyday life and most people accept it as beneficial to our health. With the advance of our knowledge in cutaneous photochemistry, photobiology and photomedicine over the past four decades, the terrestrial solar radiation has become a concern of dermatologists and is considered to be a major damaging environmental factor for our skin. Most photobiological effects (e.g., sunburn, suntanning, local and systemic immunosuppression, photoaging or dermatoheliosis, skin cancer and precancer, etc.) are attributed to ultraviolet radiation (UVR) and more particularly to UVB radiation (290-320 nm). UVA radiation (320-400 nm) also plays an important role in the induction of erythema by the photosensitized generation of reactive oxygen species (singlet oxygen (1O2), superoxide (O2.-) and hydroxyl radicals (.OH)) that damage DNA and cellular membranes, and promote carcinogenesis and the changes associated with photoaging. Therefore, research efforts have been directed at a better photochemical and photobiological understanding of the so-called sunburn reaction, actinic or solar erythema. To survive the insults of actinic damage, the skin appears to have different intrinsic defensive mechanisms, among which antioxidants (enzymatic and non-enzymatic systems) play a pivotal role. In this paper, we will review the basic aspects of the action of UVR on the skin: a) photochemical reactions resulting from photon absorption by endogenous chromophores; b) the lipid peroxidation phenomenon, and c) intrinsic defensive cutaneous mechanisms (antioxidant systems). The last section will cover the inflammatory response including mediator release after cutaneous UVR exposure and adhesion molecule expression

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Metalloproteinases and disintegrins are important components of most viperid and crotalid venoms. Large metalloproteinases referred to as MDC enzymes are composed of an N-terminal Metalloproteinase domain, a Disintegrin-like domain and a Cys-rich C-terminus. In contrast, disintegrins are small non-enzymatic RGD-containing cysteine-rich polypeptides. However, the disintegrin region of MDC enzymes bears a high degree of structural homology to that of the disintegrins, although it lacks the RGD motif. Despite these differences, both components share the property of being able to recognize integrin cell surface receptors and thereby to inhibit integrin-dependent cell reactions. Recently, several membrane-bound MDC enzymes, closely related to soluble venom MDC enzymes, have been described in mammalian cells. This group of membrane-anchored mammalian enzymes is also called the ADAM family of proteins due to the structure revealing A Disintegrin And Metalloproteinase domains. ADAMs are involved in the shedding of molecules from the cell surface, a property which is also shared by some venom MDC enzymes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effect of D002, a defined mixture of higher primary alcohols purified from bee wax, on in vivo and in vitro lipid peroxidation was studied. The extent of lipid peroxidation was measured on the basis of the levels of thiobarbituric acid reactive substances (TBARS). When D002 (5-100 mg/kg body weight) was administered orally to rats for two weeks, a partial inhibition of the in vitro enzymatic and non-enzymatic lipid peroxidation was observed in liver and brain microsomes. Maximal protection (46%) occurred at a dose of 25 mg/kg. D002 behaved differently depending on both the presence of NADPH and the integrity of liver microsomes, which suggests that under conditions where microsomal metabolism was favored the protective effect of D002 was increased. D002 (25 mg/kg) also completely inhibited carbon tetrachloride- and toluene-induced in vivo lipid peroxidation in liver and brain. Also, D002 significantly lowered in a dose-dependent manner the basal level of TBARS in liver (19-40%) and brain (28-44%) microsomes. We conclude that the oral administration of D002 (5, 25 and 100 mg/kg) for two weeks protected rat liver and brain microsomes against microsomal lipid peroxidation in vitro and in vivo. Thus, D002 could be useful as a dietary natural antioxidant supplement. More studies are required before these data can be extrapolated to the recommendation for the use of D002 as a dietary antioxidant supplement for humans.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

All aerobic organisms have to deal with the toxicity of oxygen. Oxygen enables more efficient energy production compared to anaerobic respiration or fermentation, but at the same time reactive oxygen species (ROS) are being formed. ROS can also be produced by external factors such as UV-radiation and contamination. ROS can cause damage to biomolecules such as DNA, lipids and proteins and organisms try to keep the damage as small as possible by repairing biomolecules and metabolizing ROS. All ROS are not harmful, because they are used as signaling molecules. To cope against ROS organism have an antioxidant (AOX) system which consists both enzymatic and non-enzymatic AOX defense. Some AOX are produced by the organism itself and some are gained via diet. In this thesis I studied environmentally caused changes in the redox regulation of different wild vertebrate animals to gain knowledge on the temporal, spatial and pollution-derived-effects on the AOX systems. As study species I used barn swallow, ringed seal and the Baltic salmon. For the barn swallow the main interest was the seasonal fluctuation in the redox regulation and its connection to migration and breeding. The more contaminated ringed seals of the Baltic Sea were compared to seals from cleaner Svalbard to investigate whether they suffered from contaminant induced oxidative stress. The regional and temporal variation in redox regulation and regional variation in mRNA and protein expressions of Baltic salmon were studied to gain knowledge if the salmon from different areas are equally stressed. As a comparative aspect the redox responses of these different species were investigated to see which parts of the AOX system are substantial in which species. Certain parts of AOX system were connected to breeding and others to migration in barn swallows, there was also differences in biotransformation between birds caught from Africa and Finland. The Baltic ringed seal did not differ much from the seals from Svalbard, despite the difference in contaminant load. A possible explanation to this could be the enhanced AOX mechanisms against dive-associated oxidative stress in diving air-breathing animals, which also helps to cope with ROS derived from other sourses. The Baltic salmon from Gulf of Finland (GoF) showed higher activities in their AOX defense enzymes and more oxidative damage than fish from other areas. Also on mRNA and proteomic level, stress related metabolic changes were most profound in in the fish from GoF. Mainly my findings on species related differences followed the pattern of mammals showing highest activities and least damage and birds showing lower activities and most damage, fish being intermediate. In general, the glutathione recycling-related enzymes and the ratio of oxidized and reduced glutathione seemed to be the most affected parameters in all of the species.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Exposure to stress induces a cluster of physiological and behavioral changes in an effort to maintain the homeostasis of the organism. Long-term exposure to stress, however, has detrimental effects on several cell functions such as the impairment of antioxidant defenses leading to oxidative damage. Oxidative stress is a central feature of many diseases. The lungs are particularly susceptible to lesions by free radicals and pulmonary antioxidant defenses are extensively distributed and include both enzymatic and non-enzymatic systems. The aim of the present study was to determine lipid peroxidation and total radical-trapping potential (TRAP) changes in lungs of rats submitted to different models of chronic stress. Adult male Wistar rats weighing 180-230 g were submitted to different stressors (variable stress, N = 7) or repeated restraint stress for 15 (N = 10) or 40 days (N = 6) and compared to control groups (N = 10 each). Lipid peroxidation levels were assessed by thiobarbituric acid reactive substances (TBARS), and TRAP was measured by the decrease in luminescence using the 2-2'-azo-bis(2-amidinopropane)-luminol system. Chronic variable stress induced a 51% increase in oxidative stress in lungs (control group: 0.037 ± 0.002; variable stress: 0.056 ± 0.007, P < 0.01). No difference in TBARS was observed after chronic restraint stress, but a significant 57% increase in TRAP was presented by the group repeatedly restrained for 15 days (control group: 2.48 ± 0.42; stressed: 3.65 ± 0.16, P < 0.05). We conclude that different stressors induce different effects on the oxidative status of the organism.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Molecular oxygen (O2) is the premier biological electron acceptor that serves vital roles in fundamental cellular functions. However, with the beneficial properties of O2 comes the inadvertent formation of reactive oxygen species (ROS) such as superoxide (O2·-), hydrogen peroxide, and hydroxyl radical (OH·). If unabated, ROS pose a serious threat to or cause the death of aerobic cells. To minimize the damaging effects of ROS, aerobic organisms evolved non-enzymatic and enzymatic antioxidant defenses. The latter include catalases, peroxidases, superoxide dismutases, and glutathione S-transferases (GST). Cellular ROS-sensing mechanisms are not well understood, but a number of transcription factors that regulate the expression of antioxidant genes are well characterized in prokaryotes and in yeast. In higher eukaryotes, oxidative stress responses are more complex and modulated by several regulators. In mammalian systems, two classes of transcription factors, nuclear factor kB and activator protein-1, are involved in the oxidative stress response. Antioxidant-specific gene induction, involved in xenobiotic metabolism, is mediated by the "antioxidant responsive element" (ARE) commonly found in the promoter region of such genes. ARE is present in mammalian GST, metallothioneine-I and MnSod genes, but has not been found in plant Gst genes. However, ARE is present in the promoter region of the three maize catalase (Cat) genes. In plants, ROS have been implicated in the damaging effects of various environmental stress conditions. Many plant defense genes are activated in response to these conditions, including the three maize Cat and some of the superoxide dismutase (Sod) genes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cubiu (Solanum sessiliflorum Dunal) is an Amazonian Basin native fruit. Its importance comes from its high contents of pectin. Currently, processing technologies are necessary for the substitution of the traditional system (small crops and small-scale processing) for a larger scale system and thus increase the use of biodiversity and promote the implementation of Local Productive Arrangements of agribusiness in the Amazon. This research aims to evaluate the methods of peeling cubiu. Ripe fruits were divided into lots (150 each) and subjected to the following treatments: immersion in 2.5% NaOH boiling solution for 5 minutes, exposure to water vapor, and immersion in water at 96 ºC for 5, 10, 15 and 20 minutes. The peel released during heat treatment and immediately removed under running tap water. In the control treatment, the fruits were manually peeled (unheated) with a stainless steel knife. The treatments were evaluated for completeness and ease of peeling, tissue integrity, texture, and peroxidase activity. The immersion in 2.5% NaOH boiling solution (5 minutes) stood out as the best treatment since it inhibited the enzymatic browning and intensified the natural yellow color of the cubiu fruit and easily and fully peeled the whole fruit more rapidly without damaging its tissues. This treatment was chosen as the most advantageous because it can promote simultaneous peeling and bleaching. Therefore, it is recommended for cubiu industrial processing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In Brazil, the largest producer of sugarcane in the world, the industrial process transforms this crop into ethanol and/or granulated sugar. Some cultivars exhibit enzymatic browning in the extracted sugarcane juice at levels harmful to the manufacturing process of white granulated sugar. The objective of this study was to assess the effect of sugarcane straw used as soil coverage, the use of different planting systems, and treatments with hydrogel polymer on enzymatic activity. The cultivar RB 86 7515 was sampled for 8 months; the first sample was obtained by cutting the upper portion of the stalk at the internode, which was taken to the laboratory for determination of the enzymatic activity of polyphenoloxidase (PPO) and peroxidase (POD). The soil coverage with different forms of straw as well as the planting systems did not change the enzymatic activity of polyphenoloxidase (PPO) and peroxidase (POD). The polyphenoloxidase (PPO) activity increased with the use of a polymer due to increased polyphenoloxidase (PPO) activity in the groove system. The enzymes studied showed changes in activity during the experimental period. The production of sugar at the end of the season (August to November) avoids the periods of highest enzymatic activity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The thermal inactivation of yeast isolated from spoiled Jubileu peach puree and that of polyphenoloxidase (PPO) and peroxidase (POD) in cv. Jubileu, which is widely cultivated in southern Rio Grande do Sul state, Brazil, were studied. PPO and POD were extracted using the protein powder method and submitted to partial purification by precipitation followed by dialysis. The enzymatic activity was determined measuring the increase in absorbance at 420 nm for PPO and 470 nm for POD. The yeast used in this investigation was isolated from spoiled Jubileu peach puree at 22 °Brix, with total initial microbial count of 22 × 10² UFCmL- 1. Stock cultures were maintained on potato dextrose agar (PDA) slants at 4 °C and pH 5 for later use for microbial growth. In all cases, kinetic analysis of the results suggests that the thermal inactivation was well described by a first-order kinetic model, and the temperature dependence was significantly represented by the Arrhenius law. Both enzymes were affected by heat denaturation, and PPO was more thermostable. PPO was also more thermosTable than the yeast isolated from peach puree. The D60-values were 1.53 and 1.87 min for PPO and yeast isolated from spoiled Jubileu peach puree, respectively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

AbstractThe Atlantic Forest has species of native fruits, consumed fresh and processed, which have an important contribution to food sovereignty of families that consume it. This study examined the physical and physicochemical characteristics, proximate composition, concentration of carotenoids, vitamin C, vitamin E and minerals in the pulp and kernels of fruits of licuri (Syagrus coronata (Mart.) Becc.). Titratable acidity was analyzed by volumetric neutralization, soluble solids by refractometry, proteins by the micro-Kjeldahl method, lipids by gravimetry using soxhlet, dietary fiber by non-enzymatic gravimetry, carotenoids and vitamin C by HPLC-DAD, vitamin E by HPLC-fluorescence, and minerals by ICP-AES. Pulp were a source of Zn (0.95 mg 100–1), a good source of fiber (6.15 g 100–1), excellent source of provitamin A (758.75 RAE 100–1), Cu (0.69 mg 100–1), Fe (3.81 mg 100–1), Mn (3.40 mg 100–1) and Mo (0.06 mg 100–1). The kernel were a source of Fe (3.36 mg 100–1) and excellent source of Mn (6.14 mg 100–1), Cu (0.97 mg 100–1) and Mo (0.07 mg 100–1). The nutritional value and wide availability of licuri fruit make it an important resource for reducing food insecurity and improving nutrition of the rural population and other individuals who have access to it.