952 resultados para Non-destructive testing (NDT)
Resumo:
Ultrasonic tomography is a powerful tool for identifying defects within an object or structure. This method can be applied on structures where x-ray tomography is impractical due to size, low contrast, or safety concerns. By taking many ultrasonic pulse velocity (UPV) readings through the object, an image of the internal velocity variations can be constructed. Air-coupled UPV can allow for more automated and rapid collection of data for tomography of concrete. This research aims to integrate recent developments in air-coupled ultrasonic measurements with advanced tomography technology and apply them to concrete structures. First, non-contact and semi-contact sensor systems are developed for making rapid and accurate UPV measurements through PVC and concrete test samples. A customized tomographic reconstruction program is developed to provide full control over the imaging process including full and reduced spectrum tomographs with percent error and ray density calculations. Finite element models are also used to determine optimal measurement configurations and analysis procedures for efficient data collection and processing. Non-contact UPV is then implemented to image various inclusions within 6 inch (152 mm) PVC and concrete cylinders. Although there is some difficulty in identifying high velocity inclusions, reconstruction error values were in the range of 1.1-1.7% for PVC and 3.6% for concrete. Based upon the success of those tests, further data are collected using non-contact, semi-contact, and full contact measurements to image 12 inch (305 mm) square concrete cross-sections with 1 inch (25 mm) reinforcing bars and 2 inch (51 mm) square embedded damage regions. Due to higher noise levels in collected signals, tomographs of these larger specimens show reconstruction error values in the range of 10-18%. Finally, issues related to the application of these techniques to full-scale concrete structures are discussed.
Resumo:
A wide range of non-destructive testing (NDT) methods for the monitoring the health of concrete structure has been studied for several years. The recent rapid evolution of wireless sensor network (WSN) technologies has resulted in the development of sensing elements that can be embedded in concrete, to monitor the health of infrastructure, collect and report valuable related data. The monitoring system can potentially decrease the high installation time and reduce maintenance cost associated with wired monitoring systems. The monitoring sensors need to operate for a long period of time, but sensors batteries have a finite life span. Hence, novel wireless powering methods must be devised. The optimization of wireless power transfer via Strongly Coupled Magnetic Resonance (SCMR) to sensors embedded in concrete is studied here. First, we analytically derive the optimal geometric parameters for transmission of power in the air. This specifically leads to the identification of the local and global optimization parameters and conditions, it was validated through electromagnetic simulations. Second, the optimum conditions were employed in the model for propagation of energy through plain and reinforced concrete at different humidity conditions, and frequencies with extended Debye's model. This analysis leads to the conclusion that SCMR can be used to efficiently power sensors in plain and reinforced concrete at different humidity levels and depth, also validated through electromagnetic simulations. The optimization of wireless power transmission via SMCR to Wearable and Implantable Medical Device (WIMD) are also explored. The optimum conditions from the analytics were used in the model for propagation of energy through different human tissues. This analysis shows that SCMR can be used to efficiently transfer power to sensors in human tissue without overheating through electromagnetic simulations, as excessive power might result in overheating of the tissue. Standard SCMR is sensitive to misalignment; both 2-loops and 3-loops SCMR with misalignment-insensitive performances are presented. The power transfer efficiencies above 50% was achieved over the complete misalignment range of 0°-90° and dramatically better than typical SCMR with efficiencies less than 10% in extreme misalignment topologies.
Resumo:
Non-Destructive Testing (NDT) of deep foundations has become an integral part of the industry’s standard manufacturing processes. It is not unusual for the evaluation of the integrity of the concrete to include the measurement of ultrasonic wave speeds. Numerous methods have been proposed that use the propagation speed of ultrasonic waves to check the integrity of concrete for drilled shaft foundations. All such methods evaluate the integrity of the concrete inside the cage and between the access tubes. The integrity of the concrete outside the cage remains to be considered to determine the location of the border between the concrete and the soil in order to obtain the diameter of the drilled shaft. It is also economic to devise a methodology to obtain the diameter of the drilled shaft using the Cross-Hole Sonic Logging system (CSL). Performing such a methodology using the CSL and following the CSL tests is performed and used to check the integrity of the inside concrete, thus allowing the determination of the drilled shaft diameter without having to set up another NDT device. This proposed new method is based on the installation of galvanized tubes outside the shaft across from each inside tube, and performing the CSL test between the inside and outside tubes. From the performed experimental work a model is developed to evaluate the relationship between the thickness of concrete and the ultrasonic wave properties using signal processing. The experimental results show that there is a direct correlation between concrete thicknesses outside the cage and maximum amplitude of the received signal obtained from frequency domain data. This study demonstrates how this new method to measuring the diameter of drilled shafts during construction using a NDT method overcomes the limitations of currently-used methods. In the other part of study, a new method is proposed to visualize and quantify the extent and location of the defects. It is based on a color change in the frequency amplitude of the signal recorded by the receiver probe in the location of defects and it is called Frequency Tomography Analysis (FTA). Time-domain data is transferred to frequency-domain data of the signals propagated between tubes using Fast Fourier Transform (FFT). Then, distribution of the FTA will be evaluated. This method is employed after CSL has determined the high probability of an anomaly in a given area and is applied to improve location accuracy and to further characterize the feature. The technique has a very good resolution and clarifies the exact depth location of any void or defect through the length of the drilled shaft for the voids inside the cage. The last part of study also evaluates the effect of voids inside and outside the reinforcement cage and corrosion in the longitudinal bars on the strength and axial load capacity of drilled shafts. The objective is to quantify the extent of loss in axial strength and stiffness of drilled shafts due to presence of different types of symmetric voids and corrosion throughout their lengths.
Resumo:
Non Destructive Testing (NDT) and Structural Health Monitoring (SHM) are becoming essential in many application contexts, e.g. civil, industrial, aerospace etc., to reduce structures maintenance costs and improve safety. Conventional inspection methods typically exploit bulky and expensive instruments and rely on highly demanding signal processing techniques. The pressing need to overcome these limitations is the common thread that guided the work presented in this Thesis. In the first part, a scalable, low-cost and multi-sensors smart sensor network is introduced. The capability of this technology to carry out accurate modal analysis on structures undergoing flexural vibrations has been validated by means of two experimental campaigns. Then, the suitability of low-cost piezoelectric disks in modal analysis has been demonstrated. To enable the use of this kind of sensing technology in such non conventional applications, ad hoc data merging algorithms have been developed. In the second part, instead, imaging algorithms for Lamb waves inspection (namely DMAS and DS-DMAS) have been implemented and validated. Results show that DMAS outperforms the canonical Delay and Sum (DAS) approach in terms of image resolution and contrast. Similarly, DS-DMAS can achieve better results than both DMAS and DAS by suppressing artefacts and noise. To exploit the full potential of these procedures, accurate group velocity estimations are required. Thus, novel wavefield analysis tools that can address the estimation of the dispersion curves from SLDV acquisitions have been investigated. An image segmentation technique (called DRLSE) was exploited in the k-space to draw out the wavenumber profile. The DRLSE method was compared with compressive sensing methods to extract the group and phase velocity information. The validation, performed on three different carbon fibre plates, showed that the proposed solutions can accurately determine the wavenumber and velocities in polar coordinates at multiple excitation frequencies.
Resumo:
Discussion of the numerical modeling of NDT methods based on the potential drop and the disruption of power lines to describe the nature, importance and application of modeling. La 1ère partie est consacrée aux applications aux contrôles par courants de Foucault. The first part is devoted to applications for inspection by eddy currents.
Resumo:
Control by voltage drop DC. Contrôle par chute de potentiel de courant alternatif. Control by voltage drop AC.
Resumo:
Al-Cu alloys are widely used in the aerospace and automotive industries due to their high specific strength in some tempered conditions. However, due to poor corrosion and wear resistance, they are often anodized and/or painted. Plasma nitriding has been proposed as an alternative, though the developments in this technique are still in a recent stage for Al alloys. Electrical characterization techniques are well implemented NDTs in the industry because of good accuracy associated with lower cost, compared to other methods. Some, like eddy currents and 4-point probe techniques, are often used in coating inspection. The objective of this study was to perform Al nitriding at low temperatures to minimize the tempering initial condition damage and to assess the feasibility of eddy currents technique as a method for evaluating surface properties. The work developed can be divided in two stages. The first one was the process tuning, done at the Shibaura Institute of Technology, in Tokyo; and the second was the electrical characterization done in Faculdade de Ciências e Tecnologia, UNL. Low temperature nitriding of AA2011 alloy specimens was successfully achieved. Electrical conductivity results show that lift-off measurements by eddy currents testing can be related to surface properties.
Resumo:
The MIT-Scan-T2 device is marketed as a non-destructive way to determine pavement thickness on both HMA and PCC pavements. PCC pavement thickness determination is an important incentivedisincentive measurement for the Iowa DOT and contractors. The thickness incentive can be as much as 3% of the concrete contact unit price and the disincentive can be as severe as remove and replace. This study evaluated the potential of the MIT device for PCC pavement thickness quality assurance. The limited testing indicates the unit is sufficiently repeatable and accurate enough to replace core drilling as the thickness measurement method. Further study is needed to statistically establish the single user and multi-user/device precision as well as establish an appropriate sampling protocol and PWL specification.
Resumo:
Environmental decay in porous masonry materials, such as brick and mortar, is a widespread problem concerning both new and historic masonry structures. The decay mechanisms are quite complex dependng upon several interconnected parameters and from the interaction with the specific micro-climate. Materials undergo aesthetical and substantial changes in character but while many studies have been carried out, the mechanical aspect has been largely understudied while it bears true importance from the structural viewpoint. A quantitative assessment of the masonry material degradation and how it affects the load-bearing capacity of masonry structures appears missing. The research work carried out, limiting the attention to brick masonry addresses this issue through an experimental laboratory approach via different integrated testing procedures, both non-destructive and mechanical, together with monitoring methods. Attention was focused on transport of moisture and salts and on the damaging effects caused by the crystallization of two different salts, sodium chloride and sodium sulphate. Many series of masonry specimens, very different in size and purposes were used to track the damage process since its beginning and to monitor its evolution over a number of years Athe same time suitable testing techniques, non-destructive, mini-invasive, analytical, of monitoring, were validated for these purposes. The specimens were exposed to different aggressive agents (in terms of type of salt, of brine concentration, of artificial vs. open-air natural ageing, …), tested by different means (qualitative vs. quantitative, non destructive vs. mechanical testing, punctual vs. wide areas, …), and had different size (1-, 2-, 3-header thick walls, full-scale walls vs. small size specimens, brick columns and triplets vs. small walls, masonry specimens vs. single units of brick and mortar prisms, …). Different advanced testing methods and novel monitoring techniques were applied in an integrated holistic approach, for quantitative assessment of masonry health state.
Resumo:
National Highway Traffic Safety Administration, Office of Research and Development, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
The object of this work was to further develop the idea introduced by Muaddi et al (1981) which enables some of the disadvantages of earlier destructive adhesion test methods to be overcome. The test is non-destructive in nature but it does need to be calibrated against a destructive method. Adhesion is determined by measuring the effect of plating on internal friction. This is achieved by determining the damping of vibrations of a resonating specimen before and after plating. The level of adhesion was considered by the above authors to influence the degree of damping. In the major portion of the research work the electrodeposited metal was Watt's nickel, which is ductile in nature and is therefore suitable for peel adhesion testing. The base metals chosen were aluminium alloys S1C and HE9 as it is relatively easy to produce varying levels of adhesion between the substrate and electrodeposited coating by choosing the appropriate process sequence. S1C alloy is the commercially pure aluminium and was used to produce good adhesion. HE9 aluminium alloy is a more difficult to plate alloy and was chosen to produce poorer adhesion. The "Modal Testing" method used for studying vibrations was investigated as a possible means of evaluating adhesion but was not successful and so research was concentrated on the "Q" meter. The method based on the use of a "Q" meter involves the principle of exciting vibrations in a sample, interrupting the driving signal and counting the number of oscillations of the freely decaying vibrations between two known preselected amplitudes of oscillations. It was not possible to reconstruct a working instrument using Muaddi's thesis (1982) as it had either a serious error or the information was incomplete. Hence a modified "Q" meter had to be designed and constructed but it was then difficult to resonate non-magnetic materials, such as aluminium, therefore, a comparison before and after plating could not be made. A new "Q" meter was then developed based on an Impulse Technique. A regulated miniature hammer was used to excite the test piece at the fundamental mode instead of an electronic hammer and test pieces were supported at the two predetermined nodal points using nylon threads. This instrument developed was not very successful at detecting changes due to good and poor pretreatments given before plating, however, it was more sensitive to changes at the surface such as room temperature oxidation. Statistical analysis of test results from untreated aluminium alloys show that the instrument is not always consistent, the variation was even bigger when readings were taken on different days. Although aluminium is said to form protective oxides at room temperature there was evidence that the aluminium surface changes continuously due to film formation, growth and breakdown. Nickel plated and zinc alloy immersion coated samples also showed variation in Q with time. In order to prove that the variations in Q were mainly due to surface oxidation, aluminium samples were lacquered and anodised Such treatments enveloped the active surfaces reacting with the environment and the Q variation with time was almost eliminated especially after hard anodising. This instrument detected major differences between different untreated aluminium substrates.Also Q values decreased progressively as coating thicknesses were increased. This instrument was also able to detect changes in Q due to heat-treatment of aluminium alloys.
Resumo:
Using a desorption/ionization technique, easy ambient sonic-spray ionization coupled to mass spectrometry (EASI-MS), documents related to the 2nd generation of Brazilian Real currency (R$) were screened in the positive ion mode for authenticity based on chemical profiles obtained directly from the banknote surface. Characteristic profiles were observed for authentic, seized suspect counterfeit and counterfeited homemade banknotes from inkjet and laserjet printers. The chemicals in the authentic banknotes' surface were detected via a few minor sets of ions, namely from the plasticizers bis(2-ethylhexyl)phthalate (DEHP) and dibutyl phthalate (DBP), most likely related to the official offset printing process, and other common quaternary ammonium cations, presenting a similar chemical profile to 1st-generation R$. The seized suspect counterfeit banknotes, however, displayed abundant diagnostic ions in the m/z 400-800 range due to the presence of oligomers. High-accuracy FT-ICR MS analysis enabled molecular formula assignment for each ion. The ions were separated by 44 m/z, which enabled their characterization as Surfynol® 4XX (S4XX, XX=40, 65, and 85), wherein increasing XX values indicate increasing amounts of ethoxylation on a backbone of 2,4,7,9-tetramethyl-5-decyne-4,7-diol (Surfynol® 104). Sodiated triethylene glycol monobutyl ether (TBG) of m/z 229 (C10H22O4Na) was also identified in the seized counterfeit banknotes via EASI(+) FT-ICR MS. Surfynol® and TBG are constituents of inks used for inkjet printing.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica