972 resultados para Non-autonomous equation
Resumo:
Résumé : La voie de signalisation Notch est essentielle pour la différentiation de l'épiderme lors du développement embryonnaire de la peau. Il a été démontré que l'inactivation de Notch1 dans la peau de souris conduit à une hyperplasie de l'épiderme ainsi qu'à la formation subséquente de carcinomes basocellulaires ainsi que de plaques cornéennes. L'inactivation de Notch1 dans la cornée combinée à des lésions mécaniques démontre que les cellules progénitrices de la cornée se différentient en un épithélium hyperplasique et kératinisé comme la peau. Ce changement de destinée cellulaire conduit à une cécité cornéenne et implique des processus non-autonomes aux cellules épithéliales, caractérisés par la sécrétion de FGF-2 par l'épithélium Notch1-/- suivi d'une vascularisation et d'un remaniement du stroma sous-jacent. La déficience en vitamine A est connu comme cause de lésions cornéennes humaines (xérophtalmie sévère). En accord, nous avons trouvé que la signalisation Notch1 était liée au métabolisme de la vitamine A par la régulation de l'expression de CRBP1, nécessaire pour générer un pool de rétinol intracellulaire. La perte de Notch1 dans l'épiderme, l'autre récepteur de la famille présent dans la peau marine, ne conduit pas à un phénotype manifeste. Cependant, l'inactivation dans l'épiderme de Notch1 et Notch2 ensemble, ou de RBP-J, induit une dermatite atopique (DA) sévère chez les souris. De même, les patients souffrants de DA mais pas ceux souffrant de psoriasis ou de lichen plan, ont une réduction marquée de l'expression des récepteurs Notch dans la peau. La perte de Notch dans les keratinocytes conduit à une activation de la voie NF-κB, ce qui ensuite induit la production de TSLP, une cytokine profondément impliquée dans la pathogenèse de la DA. Nous démontrons génétiquement que TSLP est responsable de la DA ainsi que du développent d'un syndrome myéloprolifératif non-autonome aux cellules induit par le G-CSF. Cependant, ces souris avec une inactivation dans l'épiderme de Notch1 et Notch2 et aussi incapables de répondre au TSLP développent des tumeurs invasive sévères caractérisées par une haute activité de signalisation ß-catenin. TSLPR est identifié comme un potentiel suppresseur de tumeur non-autonome aux cellules tumorales; la transplantation de cellules hématopoïétiques TSLPR-/- dans des souris déficientes pour Notch est suffisant pour causer des tumeurs. Summary : The Notch pathway is essential for proper epidermal differentiation during embryonic skin development. It has previously been demonstrated that Notch1 inactivation in marine skin results in epidermal hyperplasia and subsequent formation of basal cell carcinoma-like (BCC-like) tumors as well as corneal plaques. Inducible ablation of Notch1 in the cornea combined with mechanical wounding show that Notch1 deficient corneal progenitor cells differentiate into a hyperplasic, keratinized, skin-like epithelium. This cell fate switch leads to corneal blindness and involves cell non-autonomous processes, characterized by secretion of FGF-2 through Notch1-/- epithelium followed by vascularisation and remodelling of the underlying stroma. Vitamin A deficiency is known to induce a similar corneal defect in humans (severe xerophthalmia). Accordingly, we found that Notch1 signaling is linked to vitamin A metabolism by regulating the expression of CRBP1, required to generate a pool of intracellular retinol. Epidermal loss of Notch2, the other Notch receptor present in marine skin, doesn't lead to any overt phenotypes. However, postnatal epidermis-specific inactivation of both Notch1 and Notch2, or of RBP-J, induces the development of a severe form of atopic dermatitis (AD) in mice. Likewise, patients suffering from AD, but not psoriasis or lichen planas, have a marked reduction of Notch receptor expression in the skin. Loss of Notch in keratinocytes leads to an activation of NF-κB signaling which in turn induces the production of Thymic stromal lymphopoietin (TSLP), a cytokine deeply implicated in the pathogenesis of AD. We genetically demonstrate that TSLP is responsible for AD as well as the development of a cell non-autonomous G-CSF induced myeloproliferative disorder (MPD) in mice. However, these mice with conditional epidermal inactivation of Notch1 and Notch2 as well as incapable to respond to TSLP develop severe invasive tumors characterized by high ß-catenin signaling activity. TSLPR is identified as a potential cell non-autonomous tumor suppressor; transplantation of TSLPR-/- hematopoietic cells into epidermal Notch deficient mice is sufficient to cause tumors.
Resumo:
Transposable elements, as major components of most eukaryotic organisms' genomes, define their structural organization and plasticity. They supply host genomes with functional elements, for example, binding sites of the pleiotropic master transcription factor p53 were identified in LINE1, Alu and LTR repeats in the human genome. Similarly, in this report we reveal the role of zebrafish (Danio rerio) EnSpmN6_DR non-autonomous DNA transposon in shaping the repertoire of the p53 target genes. The multiple copies of EnSpmN6_DR and their embedded p53 responsive elements drive in several instances p53-dependent transcriptional modulation of the adjacent gene, whose human orthologs were frequently previously annotated as p53 targets. These transposons define predominantly a set of target genes whose human orthologs contribute to neuronal morphogenesis, axonogenesis, synaptic transmission and the regulation of programmed cell death. Consistent with these biological functions the orthologs of the EnSpmN6_DR-colonized loci are enriched for genes expressed in the amygdala, the hippocampus and the brain cortex. Our data pinpoint a remarkable example of convergent evolution: the exaptation of lineage-specific transposons to shape p53-regulated neuronal morphogenesis-related pathways in both a hominid and a teleost fish.
Resumo:
BACKGROUND: The Notch pathway is essential for proper epidermal differentiation during embryonic skin development. Moreover, skin specific loss of Notch signaling in the embryo results in skin barrier defects accompanied by a B-lymphoproliferative disease. However, much less is known about the consequences of loss of Notch signaling after birth. METHODOLOGY AND PRINCIPAL FINDINGS: To study the function of Notch signaling in the skin of adult mice, we made use of a series of conditional gene targeted mice that allow inactivation of several components of the Notch signaling pathway specifically in the skin. We demonstrate that skin-specific inactivation of Notch1 and Notch2 simultaneously, or RBP-J, induces the development of a severe form of atopic dermatitis (AD), characterized by acanthosis, spongiosis and hyperkeratosis, as well as a massive dermal infiltration of eosinophils and mast cells. Likewise, patients suffering from AD, but not psoriasis or lichen planus, have a marked reduction of Notch receptor expression in the skin. Loss of Notch in keratinocytes induces the production of thymic stromal lymphopoietin (TSLP), a cytokine deeply implicated in the pathogenesis of AD. The AD-like associated inflammation is accompanied by a myeloproliferative disorder (MPD) characterized by an increase in immature myeloid populations in the bone marrow and spleen. Transplantation studies revealed that the MPD is cell non-autonomous and caused by dramatic microenvironmental alterations. Genetic studies demontrated that G-CSF mediates the MPD as well as changes in the bone marrow microenvironment leading to osteopenia. SIGNIFICANCE: Our data demonstrate a critical role for Notch in repressing TSLP production in keratinocytes, thereby maintaining integrity of the skin and the hematopoietic system.
Resumo:
We study the existence of periodic solutions of the non--autonomous periodic Lyness' recurrence u_{n+2}=(a_n+u_{n+1})/u_n, where {a_n} is a cycle with positive values a,b and with positive initial conditions. It is known that for a=b=1 all the sequences generated by this recurrence are 5-periodic. We prove that for each pair (a,b) different from (1,1) there are infinitely many initial conditions giving rise to periodic sequences, and that the family of recurrences have almost all the even periods. If a is not equal to b, then any odd period, except 1, appears.
Resumo:
Les objets d’étude de cette thèse sont les systèmes d’équations quasilinéaires du premier ordre. Dans une première partie, on fait une analyse du point de vue du groupe de Lie classique des symétries ponctuelles d’un modèle de la plasticité idéale. Les écoulements planaires dans les cas stationnaire et non-stationnaire sont étudiés. Deux nouveaux champs de vecteurs ont été obtenus, complétant ainsi l’algèbre de Lie du cas stationnaire dont les sous-algèbres sont classifiées en classes de conjugaison sous l’action du groupe. Dans le cas non-stationnaire, une classification des algèbres de Lie admissibles selon la force choisie est effectuée. Pour chaque type de force, les champs de vecteurs sont présentés. L’algèbre ayant la dimension la plus élevée possible a été obtenues en considérant les forces monogéniques et elle a été classifiée en classes de conjugaison. La méthode de réduction par symétrie est appliquée pour obtenir des solutions explicites et implicites de plusieurs types parmi lesquelles certaines s’expriment en termes d’une ou deux fonctions arbitraires d’une variable et d’autres en termes de fonctions elliptiques de Jacobi. Plusieurs solutions sont interprétées physiquement pour en déduire la forme de filières d’extrusion réalisables. Dans la seconde partie, on s’intéresse aux solutions s’exprimant en fonction d’invariants de Riemann pour les systèmes quasilinéaires du premier ordre. La méthode des caractéristiques généralisées ainsi qu’une méthode basée sur les symétries conditionnelles pour les invariants de Riemann sont étendues pour être applicables à des systèmes dans leurs régions elliptiques. Leur applicabilité est démontrée par des exemples de la plasticité idéale non-stationnaire pour un flot irrotationnel ainsi que les équations de la mécanique des fluides. Une nouvelle approche basée sur l’introduction de matrices de rotation satisfaisant certaines conditions algébriques est développée. Elle est applicable directement à des systèmes non-homogènes et non-autonomes sans avoir besoin de transformations préalables. Son efficacité est illustrée par des exemples comprenant un système qui régit l’interaction non-linéaire d’ondes et de particules. La solution générale est construite de façon explicite.
Resumo:
La prolifération cellulaire et la croissance tissulaire sont étroitement contrôlées au cours du développement. Chez la Drosophila melanogaster, ces processus sont régulés en partie par la kinase stérile-20 Slik (SLK et LOK chez les mammifères) et le suppresseur de tumeur Hippo (Hpo, MST1/2 chez les mammifères) dans les cellules épithéliales. La surexpression de la kinase Slik augmente la taille des tissus chez les mouches adultes. Cependant, les mutants slik-/- meurent avant d'avoir terminé leur développement. Lorsqu’elle est surexprimée dans les cellules épithéliales des ailes en voie de développement, cette protéine favorise la prolifération cellulaire. En outre, l'expression de Slik dans une population de cellules conduit à une surprolifération des cellules voisines, même quand elles sont physiquement séparées. Ceci est probablement dû à la sécrétion de facteurs de croissance qui stimulent la prolifération de manière paracrine. En utilisant des méthodes génétiques et transcriptomiques, nous essayons de déterminer les molécules et les mécanismes impliqués. Contrairement à ce qui a été publié, nous avons constaté que Slik ne transmet pas de signal prolifératif en inhibant le suppresseur de tumeur Merlin (Mer, NF2 chez les mammifères), un composant en amont de la voie Hippo. Plutôt, elle favorise la prolifération non-autonome et la croissance des tissus en signalisation par la kinase dRaf (la seule kinase de la famille Raf chez la drosophile). Nous prouvons que dRaf est nécessaire chez les cellules voisines pour conduire la prolifération chez ces cellules. De plus, nous avons utilisé le séquençage du transcriptome pour identifier de nouveaux effecteurs en aval de Slik. Ce qui permettra de mieux comprendre les effets de SLK et LOK chez les humains.
Resumo:
Les kinases constituent une famille majeure de protéines qui régulent divers processus par la phosphorylation de leurs substrats, mais aussi par leur activité non- catalytique. Ce rôle indépendant de l’activité kinase a été observé chez quelques protéines dont des membres de la famille Sterile-20. La kinase Ste20 Slik de Drosophila aide au maintien de l’intégrité des tissus épithéliaux en phosphorylant l’ERM Moesin et peut aussi induire une prolifération cellulaire non-autonome indépendamment de son activité catalytique. La méthode de régulation de ces deux rôles était jusqu’ici inconnue. Nous avons identifié 19 sites de phosphorylation chez Slik par spectrométrie de masse. À l’aide de mutants, nous démontrons que les deux fonctions de Slik sont régulées par la phosphorylation d’au moins 2 résidus conservés de son segment d’activation par un mécanisme d’auto- et/ou trans-phosphorylation. Cette étude amène une meilleure compréhension de la régulation de l’intégrité épithéliale et de la croissance, deux processus clés qui sont souvent déréglés dans le cancer et certaines maladies génétiques.
Resumo:
We report numerical results from a study of balance dynamics using a simple model of atmospheric motion that is designed to help address the question of why balance dynamics is so stable. The non-autonomous Hamiltonian model has a chaotic slow degree of freedom (representing vortical modes) coupled to one or two linear fast oscillators (representing inertia-gravity waves). The system is said to be balanced when the fast and slow degrees of freedom are separated. We find adiabatic invariants that drift slowly in time. This drift is consistent with a random-walk behaviour at a speed which qualitatively scales, even for modest time scale separations, as the upper bound given by Neishtadt’s and Nekhoroshev’s theorems. Moreover, a similar type of scaling is observed for solutions obtained using a singular perturbation (‘slaving’) technique in resonant cases where Nekhoroshev’s theorem does not apply. We present evidence that the smaller Lyapunov exponents of the system scale exponentially as well. The results suggest that the observed stability of nearly-slow motion is a consequence of the approximate adiabatic invariance of the fast motion.
Resumo:
This paper is concerned with the existence of pullback attractors for evolution processes. Our aim is to provide results that extend the following results for autonomous evolution processes (semigroups) (i) An autonomous evolution process which is bounded, dissipative and asymptotically compact has a global attractor. (ii) An autonomous evolution process which is bounded, point dissipative and asymptotically compact has a global attractor. The extension of such results requires the introduction of new concepts and brings up some important differences between the asymptotic properties of autonomous and non-autonomous evolution processes. An application to damped wave problem with non-autonomous damping is considered. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In this paper we give general results on the continuity of pullback attractors for nonlinear evolution processes. We then revisit results of [D. Li, P.E. Kloeden, Equi-attraction and the continuous dependence of pullback attractors on parameters, Stoch. Dyn. 4 (3) (2004) 373-384] which show that, under certain conditions, continuity is equivalent to uniformity of attraction over a range of parameters (""equi-attraction""): we are able to simplify their proofs and weaken the conditions required for this equivalence to hold. Generalizing a classical autonomous result [A.V. Babin, M.I. Vishik, Attractors of Evolution Equations, North Holland, Amsterdam, 1992] we give bounds on the rate of convergence of attractors when the family is uniformly exponentially attracting. To apply these results in a more concrete situation we show that a non-autonomous regular perturbation of a gradient-like system produces a family of pullback attractors that are uniformly exponentially attracting: these attractors are therefore continuous, and we can give an explicit bound on the distance between members of this family. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In this article we introduce the concept of a gradient-like nonlinear semigroup as an intermediate concept between a gradient nonlinear semigroup (those possessing a Lyapunov function, see [J.K. Hale, Asymptotic Behavior of Dissipative Systems, Math. Surveys Monogr., vol. 25, Amer. Math. Soc., 1989]) and a nonlinear semigroup possessing a gradient-like attractor. We prove that a perturbation of a gradient-like nonlinear semigroup remains a gradient-like nonlinear semigroup. Moreover, for non-autonomous dynamical systems we introduce the concept of a gradient-like evolution process and prove that a non-autonomous perturbation of a gradient-like nonlinear semigroup is a gradient-like evolution process. For gradient-like nonlinear semigroups and evolution processes, we prove continuity, characterization and (pullback and forwards) exponential attraction of their attractors under perturbation extending the results of [A.N. Carvalho, J.A. Langa, J.C. Robinson, A. Suarez, Characterization of non-autonomous attractors of a perturbed gradient system, J. Differential Equations 236 (2007) 570-603] on characterization and of [A.V. Babin, M.I. Vishik, Attractors in Evolutionary Equations, Stud. Math. Appl.. vol. 25, North-Holland, Amsterdam, 1992] on exponential attraction. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Increasing efforts exist in integrating different levels of detail in models of the cardiovascular system. For instance, one-dimensional representations are employed to model the systemic circulation. In this context, effective and black-box-type decomposition strategies for one-dimensional networks are needed, so as to: (i) employ domain decomposition strategies for large systemic models (1D-1D coupling) and (ii) provide the conceptual basis for dimensionally-heterogeneous representations (1D-3D coupling, among various possibilities). The strategy proposed in this article works for both of these two scenarios, though the several applications shown to illustrate its performance focus on the 1D-1D coupling case. A one-dimensional network is decomposed in such a way that each coupling point connects two (and not more) of the sub-networks. At each of the M connection points two unknowns are defined: the flow rate and pressure. These 2M unknowns are determined by 2M equations, since each sub-network provides one (non-linear) equation per coupling point. It is shown how to build the 2M x 2M non-linear system with arbitrary and independent choice of boundary conditions for each of the sub-networks. The idea is then to solve this non-linear system until convergence, which guarantees strong coupling of the complete network. In other words, if the non-linear solver converges at each time step, the solution coincides with what would be obtained by monolithically modeling the whole network. The decomposition thus imposes no stability restriction on the choice of the time step size. Effective iterative strategies for the non-linear system that preserve the black-box character of the decomposition are then explored. Several variants of matrix-free Broyden`s and Newton-GMRES algorithms are assessed as numerical solvers by comparing their performance on sub-critical wave propagation problems which range from academic test cases to realistic cardiovascular applications. A specific variant of Broyden`s algorithm is identified and recommended on the basis of its computer cost and reliability. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
O conceito de paridade coberta de juros sugere que, na ausência de barreiras para arbitragem entre mercados, o diferencial de juros entre dois ativos, idênticos em todos os pontos relevantes, com exceção da moeda de denominação, na ausência de risco de variação cambial deve ser igual a zero. Porém, uma vez que existam riscos não diversificáveis, representados pelo risco país, inerentes a economias emergentes, os investidores exigirão uma taxa de juros maior que a simples diferença entre as taxas de juros doméstica e externa. Este estudo tem por objetivo avaliar se o ajustamento das condições de paridade coberta de juros por prêmios de risco é suficiente para a validação da relação de não-arbitragem para o mercado brasileiro, durante o período de 2007 a 2010. O risco país contamina todos os ativos financeiros emitidos em uma determinada economia e pode ser descrito como a somatória do risco de default (ou risco soberano) e do risco de conversibilidade percebidos pelo mercado. Para a estimação da equação de não arbitragem foram utilizadas regressões por Mínimos Quadrados Ordinários, parâmetros variantes no tempo (TVP) e Mínimos Quadrados Recursivos, e os resultados obtidos não são conclusivos sobre a validação da relação de paridade coberta de juros, mesmo ajustando para prêmio de risco. Erros de medidas de dados, custo de transação e intervenções e políticas restritivas no mercado de câmbio podem ter contribuído para este resultado.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We use singularity theory to classify forced symmetry-breaking bifurcation problemsf(z, lambda, mu) = f(1)(z, lambda) + muf(2)(z, lambda, mu) = 0,where f(1) is O(2)-equivariant and f(2) is D-n-equivariant with the orthogonal group actions on z is an element of R-2. Forced symmetry breaking occurs when the symmetry of the equation changes when parameters are varied. We explicitly apply our results to the branching of subharmonic solutions in a model periodic perturbation of an autonomous equation and sketch further applications.