956 resultados para Non-Rigid Structure from Motion
Resumo:
Sensing techniques are important for solving problems of uncertainty inherent to intelligent grasping tasks. The main goal here is to present a visual sensing system based on range imaging technology for robot manipulation of non-rigid objects. Our proposal provides a suitable visual perception system of complex grasping tasks to support a robot controller when other sensor systems, such as tactile and force, are not able to obtain useful data relevant to the grasping manipulation task. In particular, a new visual approach based on RGBD data was implemented to help a robot controller carry out intelligent manipulation tasks with flexible objects. The proposed method supervises the interaction between the grasped object and the robot hand in order to avoid poor contact between the fingertips and an object when there is neither force nor pressure data. This new approach is also used to measure changes to the shape of an object’s surfaces and so allows us to find deformations caused by inappropriate pressure being applied by the hand’s fingers. Test was carried out for grasping tasks involving several flexible household objects with a multi-fingered robot hand working in real time. Our approach generates pulses from the deformation detection method and sends an event message to the robot controller when surface deformation is detected. In comparison with other methods, the obtained results reveal that our visual pipeline does not use deformations models of objects and materials, as well as the approach works well both planar and 3D household objects in real time. In addition, our method does not depend on the pose of the robot hand because the location of the reference system is computed from a recognition process of a pattern located place at the robot forearm. The presented experiments demonstrate that the proposed method accomplishes a good monitoring of grasping task with several objects and different grasping configurations in indoor environments.
Resumo:
Since the beginning of 3D computer vision problems, the use of techniques to reduce the data to make it treatable preserving the important aspects of the scene has been necessary. Currently, with the new low-cost RGB-D sensors, which provide a stream of color and 3D data of approximately 30 frames per second, this is getting more relevance. Many applications make use of these sensors and need a preprocessing to downsample the data in order to either reduce the processing time or improve the data (e.g., reducing noise or enhancing the important features). In this paper, we present a comparison of different downsampling techniques which are based on different principles. Concretely, five different downsampling methods are included: a bilinear-based method, a normal-based, a color-based, a combination of the normal and color-based samplings, and a growing neural gas (GNG)-based approach. For the comparison, two different models have been used acquired with the Blensor software. Moreover, to evaluate the effect of the downsampling in a real application, a 3D non-rigid registration is performed with the data sampled. From the experimentation we can conclude that depending on the purpose of the application some kernels of the sampling methods can improve drastically the results. Bilinear- and GNG-based methods provide homogeneous point clouds, but color-based and normal-based provide datasets with higher density of points in areas with specific features. In the non-rigid application, if a color-based sampled point cloud is used, it is possible to properly register two datasets for cases where intensity data are relevant in the model and outperform the results if only a homogeneous sampling is used.
Resumo:
This paper addresses the problem of obtaining 3d detailed reconstructions of human faces in real-time and with inexpensive hardware. We present an algorithm based on a monocular multi-spectral photometric-stereo setup. This system is known to capture high-detailed deforming 3d surfaces at high frame rates and without having to use any expensive hardware or synchronized light stage. However, the main challenge of such a setup is the calibration stage, which depends on the lights setup and how they interact with the specific material being captured, in this case, human faces. For this purpose we develop a self-calibration technique where the person being captured is asked to perform a rigid motion in front of the camera, maintaining a neutral expression. Rigidity constrains are then used to compute the head's motion with a structure-from-motion algorithm. Once the motion is obtained, a multi-view stereo algorithm reconstructs a coarse 3d model of the face. This coarse model is then used to estimate the lighting parameters with a stratified approach: In the first step we use a RANSAC search to identify purely diffuse points on the face and to simultaneously estimate this diffuse reflectance model. In the second step we apply non-linear optimization to fit a non-Lambertian reflectance model to the outliers of the previous step. The calibration procedure is validated with synthetic and real data.
Resumo:
The primary goal of this dissertation is to develop point-based rigid and non-rigid image registration methods that have better accuracy than existing methods. We first present point-based PoIRe, which provides the framework for point-based global rigid registrations. It allows a choice of different search strategies including (a) branch-and-bound, (b) probabilistic hill-climbing, and (c) a novel hybrid method that takes advantage of the best characteristics of the other two methods. We use a robust similarity measure that is insensitive to noise, which is often introduced during feature extraction. We show the robustness of PoIRe using it to register images obtained with an electronic portal imaging device (EPID), which have large amounts of scatter and low contrast. To evaluate PoIRe we used (a) simulated images and (b) images with fiducial markers; PoIRe was extensively tested with 2D EPID images and images generated by 3D Computer Tomography (CT) and Magnetic Resonance (MR) images. PoIRe was also evaluated using benchmark data sets from the blind retrospective evaluation project (RIRE). We show that PoIRe is better than existing methods such as Iterative Closest Point (ICP) and methods based on mutual information. We also present a novel point-based local non-rigid shape registration algorithm. We extend the robust similarity measure used in PoIRe to non-rigid registrations adapting it to a free form deformation (FFD) model and making it robust to local minima, which is a drawback common to existing non-rigid point-based methods. For non-rigid registrations we show that it performs better than existing methods and that is less sensitive to starting conditions. We test our non-rigid registration method using available benchmark data sets for shape registration. Finally, we also explore the extraction of features invariant to changes in perspective and illumination, and explore how they can help improve the accuracy of multi-modal registration. For multimodal registration of EPID-DRR images we present a method based on a local descriptor defined by a vector of complex responses to a circular Gabor filter.
Resumo:
The primary goal of this dissertation is to develop point-based rigid and non-rigid image registration methods that have better accuracy than existing methods. We first present point-based PoIRe, which provides the framework for point-based global rigid registrations. It allows a choice of different search strategies including (a) branch-and-bound, (b) probabilistic hill-climbing, and (c) a novel hybrid method that takes advantage of the best characteristics of the other two methods. We use a robust similarity measure that is insensitive to noise, which is often introduced during feature extraction. We show the robustness of PoIRe using it to register images obtained with an electronic portal imaging device (EPID), which have large amounts of scatter and low contrast. To evaluate PoIRe we used (a) simulated images and (b) images with fiducial markers; PoIRe was extensively tested with 2D EPID images and images generated by 3D Computer Tomography (CT) and Magnetic Resonance (MR) images. PoIRe was also evaluated using benchmark data sets from the blind retrospective evaluation project (RIRE). We show that PoIRe is better than existing methods such as Iterative Closest Point (ICP) and methods based on mutual information. We also present a novel point-based local non-rigid shape registration algorithm. We extend the robust similarity measure used in PoIRe to non-rigid registrations adapting it to a free form deformation (FFD) model and making it robust to local minima, which is a drawback common to existing non-rigid point-based methods. For non-rigid registrations we show that it performs better than existing methods and that is less sensitive to starting conditions. We test our non-rigid registration method using available benchmark data sets for shape registration. Finally, we also explore the extraction of features invariant to changes in perspective and illumination, and explore how they can help improve the accuracy of multi-modal registration. For multimodal registration of EPID-DRR images we present a method based on a local descriptor defined by a vector of complex responses to a circular Gabor filter.
Resumo:
This paper describes a novel algorithm for tracking the motion of the urethra from trans-perineal ultrasound. Our work is based on the structure-from-motion paradigm and therefore handles well structures with ill-defined and partially missing boundaries. The proposed approach is particularly well-suited for video sequences of low resolution and variable levels of blurriness introduced by anatomical motion of variable speed. Our tracking method identifies feature points on a frame by frame basis using the SURF detector/descriptor. Inter-frame correspondence is achieved using nearest-neighbor matching in the feature space. The motion is estimated using a non-linear bi-quadratic model, which adequately describes the deformable motion of the urethra. Experimental results are promising and show that our algorithm performs well when compared to manual tracking.
Resumo:
This paper describes a novel algorithm for tracking the motion of the urethra from trans-perineal ultrasound. Our work is based on the structure-from-motion paradigm and therefore handles well structures with ill-defined and partially missing boundaries. The proposed approach is particularly well-suited for video sequences of low resolution and variable levels of blurriness introduced by anatomical motion of variable speed. Our tracking method identifies feature points on a frame by frame basis using the SURF detector/descriptor. Inter-frame correspondence is achieved using nearest-neighbor matching in the feature space. The motion is estimated using a non-linear bi-quadratic model, which adequately describes the deformable motion of the urethra. Experimental results are promising and show that our algorithm performs well when compared to manual tracking.
Resumo:
A Reserva Biológica de Duas Bocas (2.190 ha) é um dos maiores remanescentes de Mata Atlântica do Estado do Espírito Santo, Sudeste do Brasil. Nós amostramos tetrápodes não voadores nessa área entre maio de 2007 e abril de 2008, utilizando armadilhas de queda, armadilhas de isca, armadilhas fotográficas e buscas oportunísticas diurnas e noturnas. Além disso, nós compilamos registros de vertebrados não voadores ocorrentes nesta área disponíveis na literatura e através de espécimes em museus. Nós documentamos 52 espécies de anfíbios, 24 espécies de répteis não voadores e 39 espécies de mamíferos não voadores. Do total de 115 espécies, 47 configuram novos registros para a área e seis outras espécies tiveram sua distribuição geográfica ampliada com os resultados do presente estudo. Além disso, apresentamos o registro de predação da perereca Hypsiboas faber pela serpente Chironius bicarinatus. Cinco das espécies registradas são listadas como ameaçadas no Estado do Espírito Santo e muitas outras possuem estado de conservação incerto. A Reserva Biológica de Duas Bocas é um importante refúgio de vida selvagem, principalmente quando consideramos a expansão de áreas urbanas no seu entorno.
Resumo:
The protozoan Cryptosporidium sp. has been frequently detected in faeces from children with persistent diarrhoea. This work achieved to investigate an outbreak of cryptosporidiosis, in a day care center, attending children of high socio-economic level, between 0 and six years old. The outbreak was detected through the network of public health, when stool samples, not diarrhoeic, were examined at the Parasitology Service of the Adolfo Lutz Institute. Among the 64 examined children, 13 (20.3%) showed oocysts of Cryptosporidium sp. in the faeces examined by Kinyoun technique: seven children one year old, three, two years old and three, three years old. Among the 23 examined adults, only a 22 years old woman, possibly having an immunocomprometiment, was positive. Clinical and epidemiological aspects were investigated by questionnaires, highlighting the occurrence of the outbreak in a very dry period.
Resumo:
The prevalence of antibodies against Equine Influenza Virus (EIV) was determined in 529 equines living on ranches in the municipality of Poconé, Pantanal area of Brazil, by means of the hemagglutination inhibition test, using subtype H3N8 as antigen. The distribution and possible association among positive animal and ranches were evaluated by the chi-square test, spatial autoregressive and multiple linear regression models. The prevalence of antibodies against EIV was estimated at 45.2% (95% CI 30.2 - 61.1%) with titers ranging from 20 to 1,280 HAU. Seropositive equines were found on 92.0% of the surveyed ranches. Equine from non-flooded ranches (66.5%) and negativity in equine infectious anemia virus (EIAV) (61.7%) were associated with antibodies against EIV. No spatial correlation was found among the ranches, but the ones located in non-flooded areas were associated with antibodies against EIV. A negative correlation was found between the prevalence of antibodies against EIV and the presence of EIAV positive animals on the ranches. The high prevalence of antibodies against EIV detected in this study suggests that the virus is circulating among the animals, and this statistical analysis indicates that the movement and aggregation of animals are factors associated to the transmission of the virus in the region.
Resumo:
v.44:no.25(1966)
Resumo:
v.31:no.52(1951)
Resumo:
v.37:no.10(1955)