993 resultados para Nitrogen oxides.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Non-thermal plasma (NTP) has been introduced over the past several years as a promising method for nitrogen oxide (NOx) removal. The intent, when using NTP, is to selectively transfer input electrical energy to the electrons, and to not expend this in heating the entire gas stream, which generates free radicals through collisions, and promotes the desired chemical changes in the exhaust gases. The generated active species react with the pollutant molecules and decompose them. This paper reviews and summarizes relevant literature regarding various aspects of the application of {NTP} technology on {NOx} removal from exhaust gases. A comprehensive description of available scientific literature on {NOx} removal using {NTP} technology is presented, including various types of NTP, e.g. dielectric barrier discharge, corona discharge and electron beam. Furthermore, the combination of {NTP} with catalyst and adsorbent for better {NOx} removal efficiency is presented in detail. The removal of {NOx} from both simulated gases and real diesel engines is also considered in this review paper. As {NTP} is a new technique and is not yet commercialized, there is a need for more studies to be performed in this field.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A measurement campaign was conducted from 3 to 19 December 2012 at an urban site of Brisbane, Australia. Size distribution of ions and particle number concentrations were measured to investigate the influence of particle formation and biomass burning on atmospheric ion and particle concentrations. Overall ion and particle number concentrations during the measurement period were found to be (-1.2 x 103 cm-3 | +1.6 x 103 cm-3) and 4.4 x 103, respectively. The results of correlation analysis between concentrations of ions and nitrogen oxides indicated that positive and negative ions originated from similar sources, and that vehicle exhaust emissions had a more significant influence on intermediate/large ions, while cluster ions rapidly attached to larger particles once emitted into the atmosphere. Diurnal variations in ion concentration suggested the enrichment of intermediate and large ions on new particle formation event days, indicating that they were involved in the particle formation processes. Elevated total ions, particularly larger ions, and particle number concentrations were found during biomass burning episodes. This could be due to the attachment of cluster ions onto accumulation mode particles or production of charged particles from biomass burning, which were in turn transported to the measurement site. The results of this work enhance scientific understanding of the sources of atmospheric ions in an urban environment, as well as their interactions with particles during particle formation processes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The biological function of nitric oxide and its oxidized forms has received a great deal of attention over the past two decades. However much less attention has been focused on the reduced nitric oxide, nitroxyl (HNO). Unlike NO, HNO is highly reactive species and thus it needs to be generated by using donor compounds under experimental conditions. Currently there is only one donor available, Angeli s salt, which releases HNO in a controlled fashion under pysiological conditions. Prior studies have shown the pro-oxidative and cytotoxic potential of Angeli s salt compared to NO donors. The high reactivity of HNO with cysteine thiols is considered to form the biochemical basis for its unique properties compared to other nitrogen oxides. Such thiol modification cold result in disturbances of vital cellular functions and subsequently to death of disturbance sensitive cells, such as neurons. Therefore modification of proteins and lipids was studied in vitro and the potential neurotoxicity was studied in vivo by local infusion of Angeli s salt into the rat central nervous system. The results show that under aerobic in vitro conditions, HNO can, subsequent to autoxidation, cause irreversible oxidative modification of proteins and lipids. These effects are not however seen in cell culture or following infusion of Angeli s salt directly into the rat central nervous tissue likely due to presence of lower oxygen and higher thiol concentration. However, due to high reactivity with thiols, HNO can cause irreversible inactivation of cysteine modification sensitive enzymes such as cysteine proteases papain in vitro and cathepsin B in cell culture. Furthermore it was shown that infusion of HNO releasing Angeli s salt into the rat central nervous system causes necrotic cell death and motor dysfunction following infusion into the lumbal intrathecal space. In conclusion, the acute neurotoxic potential of Angeli s salt was shown to be relatively low, but still higher compared to NO donors. HNO was shown to affect numerous cellular processes which could result in neurotoxicity if HNO was produced in vivo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is a growing need to understand the exchange processes of momentum, heat and mass between an urban surface and the atmosphere as they affect our quality of life. Understanding the source/sink strengths as well as the mixing mechanisms of air pollutants is particularly important due to their effects on human health and climate. This work aims to improve our understanding of these surface-atmosphere interactions based on the analysis of measurements carried out in Helsinki, Finland. The vertical exchange of momentum, heat, carbon dioxide (CO2) and aerosol particle number was measured with the eddy covariance technique at the urban measurement station SMEAR III, where the concentrations of ultrafine, accumulation mode and coarse particle numbers, nitrogen oxides (NOx), carbon monoxide (CO), ozone (O3) and sulphur dioxide (SO2) were also measured. These measurements were carried out over varying measurement periods between 2004 and 2008. In addition, black carbon mass concentration was measured at the Helsinki Metropolitan Area Council site during three campaigns in 1996-2005. Thus, the analyzed dataset covered far, the most comprehensive long-term measurements of turbulent fluxes reported in the literature from urban areas. Moreover, simultaneously measured urban air pollution concentrations and turbulent fluxes were examined for the first time. The complex measurement surrounding enabled us to study the effect of different urban covers on the exchange processes from a single point of measurement. The sensible and latent heat fluxes closely followed the intensity of solar radiation, and the sensible heat flux always exceeded the latent heat flux due to anthropogenic heat emissions and the conversion of solar radiation to direct heat in urban structures. This urban heat island effect was most evident during winter nights. The effect of land use cover was seen as increased sensible heat fluxes in more built-up areas than in areas with high vegetation cover. Both aerosol particle and CO2 exchanges were largely affected by road traffic, and the highest diurnal fluxes reached 109 m-2 s-1 and 20 µmol m-2 s-1, respectively, in the direction of the road. Local road traffic had the greatest effect on ultrafine particle concentrations, whereas meteorological variables were more important for accumulation mode and coarse particle concentrations. The measurement surroundings of the SMEAR III station served as a source for both particles and CO2, except in summer, when the vegetation uptake of CO2 exceeded the anthropogenic sources in the vegetation sector in daytime, and we observed a downward median flux of 8 µmol m-2 s-1. This work improved our understanding of the interactions between an urban surface and the atmosphere in a city located at high latitudes in a semi-continental climate. The results can be utilised in urban planning, as the fraction of vegetation cover and vehicular activity were found to be the major environmental drivers affecting most of the exchange processes. However, in order to understand these exchange and mixing processes on a city scale, more measurements above various urban surfaces accompanied by numerical modelling are required.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper studies were carried out on two compact electric discharge plasma sources for controlling nitrogen oxides (NOX) emission in diesel engine exhaust. The plasma sources consist of an old television flyback transformer to generate high frequency high voltage ac (HVAC) and an automobile ignition coil to generate the high voltage pulses (HV Pulse). The compact plasma sources are aimed at retrofitting the existing catalytic converters with electric discharge assisted cleaning technique. To enhance NOX removal efficiency cascaded plasma-adsorbent technique has been used. Studies were reported at different flow rates and load conditions of the diesel engine.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A plasma-assisted catalytic reactor was used to remove nitrogen oxides (NOx) from diesel engine exhaust operated under different load conditions. Initial studies were focused on plasma reactor (a dielectric barrier discharge reactor) treatment of diesel exhaust at various temperatures. The nitric oxide (NO) removal efficiency was lowered when high temperature exhaust was treated using plasma reactor. Also, NO removal efficiency decreased when 45% load exhaust was treated. Studies were then made with plasma reactor combined with a catalytic reactor consisting of a selective catalytic reduction (SCR) catalyst, V2O5/TiO2. Ammonia was used as a reducing agent for SCR process in a ratio of 1:1 to NOx. The studies were focused on temperatures of the SCR catalytic reactor below 200°C. The plasma-assisted catalytic reactor was operated well to remove NOx under no-load and load conditions. For an energy input of 96 J/l, the NOx removal efficiencies obtained under no-load and load conditions were 90% and 72% respectively at an exhaust temperature of 100°C.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With ever more stringent NOX emissions, it is necessary to examine removal of nitrogen oxide from diesel engine exhaust. This paper describes the study of NOX reduction from 5.9-kW stationary diesel engine exhaust under nanosecond pulse energization. Two plasma reactors characterized by dielectric barrier discharge has been designed, built, and evaluated. One of the reactor designs include nine numbers of electrodes kept in parallel, and the exhaust was allowed to pass axially, whereas the second reactor consists of nine parallel electrodes and the exhaust was allowed to pass radially. The reactors were individually tested for the treatment of nitrogen oxides for gas flow rate of 2, 5, and 10 L/min. Both the reactors have been individually tested, and results show an appreciable removal of NOX with equal discharge volume. From the results, it was found that both the reactors were an efficient NOX removal. With consumption of only 36 J/L, the reactors had shown a considerable 45% DeNO(X) efficiency.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The concentration of Nitrogen Oxides (NOx) in engines which use biodiesel as fuel is higher compared to conventional diesel engine exhaust. In this paper, an attempt has been made to treat this exhaust using a combination of High frequency AC (HFAC) plasma and an industrial waste, Red Mud which shows proclivity towards Nitrogen dioxide (NO2) adsorption. The high frequency AC source in combination with the proposed compact double dielectric plasma reactors is relatively more efficient in converting Nitric Oxide (NO) to NO2. It has been shown that the plasma treated gas enhances the activity of red mud as an adsorbent/catalyst and about 60-72% NOx removal efficiency was observed at a specific energy of 250 J/L. The advantage in this method is the cost effectiveness and abundant availability of the waste red mud in the industry. Further, power estimation studies were carried out using Manley's equation for the two reactors employed in the experiment and a close agreement between experimental and predicted powers was observed. (C) 2015 The Authors. Published by Elsevier Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Socioeconomic factors have long been incorporated into environmental research to examine the effects of human dimensions on coastal natural resources. Boyce (1994) proposed that inequality is a cause of environmental degradation and the Environmental Kuznets Curve is a proposed relationship that income or GDP per capita is related with initial increases in pollution followed by subsequent decreases (Torras and Boyce, 1998). To further examine this relationship within the CAMA counties, the emission of sulfur dioxide and nitrogen oxides, as measured by the EPA in terms of tons emitted, the Gini Coefficient, and income per capita were examined for the year of 1999. A quadratic regression was utilized and the results did not indicate that inequality, as measured by the Gini Coefficient, was significantly related to the level of criteria air pollutants within each county. Additionally, the results did not indicate the existence of the Environmental Kuznets Curve. Further analysis of spatial autocorrelation using ArcMap 9.2, found a high level of spatial autocorrelation among pollution emissions indicating that relation to other counties may be more important to the level of sulfur dioxide and nitrogen oxide emissions than income per capita and inequality. Lastly, the paper concludes that further Environmental Kuznets Curve and income inequality analyses in regards to air pollutant levels incorporate spatial patterns as well as other explanatory variables. (PDF contains 4 pages)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A exaustão de um veículo de motor a diesel é uma importante fonte de poluentes atmosféricos, pois forma uma matriz complexa composta de poluentes regulados e não regulados pelos órgãos governamentais. Dentre os poluentes regulados podemos citar óxidos de nitrogênio (NOx) e material particulado. Os poluentes não regulados são pouco estudados até hoje e dentre estes encontra-se a classe dos hidrocarbonetos policíclicos aromáticos e seus derivados nitrados (nitro-HPA). Estes são encontrados na exaustão do diesel na forma gasosa ou agregados ao material particulado. Hoje, o interesse em estudos destes compostos vem aumentando, devido às suas atividades carcinogênicas e mutagênicas às quais estão sujeitas as populações dos centros urbanos. O impacto causado pelos nitro-HPA emitidos por motores a ciclo diesel ao ambiente não está ainda completamente estabelecido. Este estudo consiste na modelagem e simulação do processo de combustão de hidrocarbonetos na faixa de C1 a C4 com o objetivo de descrever a formação de compostos aromáticos, principalmente HPA, e óxidos de nitrogênio a partir de modelos cinéticos de combustão propostos na literatura como referência e fazendo uso do software de simulação Kintecus. Este projeto tem como objetivo em longo prazo propor um modelo cinético para combustão do óleo Diesel. Foi iniciada a construção de um modelo cinético de combustão a partir de modelos de hidrocarbonetos simples de C1 a C4, com formação de aromáticos, HPA e óxidos de nitrogênio. Os modelos originais foram avaliados e modificados a fim de estudar como parâmetros do modelo afetam a concentração das espécies de interesse. Foi observado a tendência de formação de benzeno e fulveno em baixas temperaturas e a tendência de formação de antraceno, pireno, fenantreno a temperaturas mais altas. Foi avaliado que a conversão NO-NO2 ocorre em maiores proporções em reações iniciadas a baixas temperaturas, 600 K. Os resultados indicam que propano é o maior responsável por esta conversão. O modelo final obtido resultou da união dos modelos de combustão Hori e Marinov mais inclusão do GRI-Mech 3.0 e reações adicionais de NOx retiradas da base de dados NIST

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As emissões atmosféricas têm sido consideradas por especialistas, poder público, iniciativa privada e organizações ambientalistas, um dos maiores impactos ambientais que o planeta vem enfrentando. Neste contexto estão tanto as fontes estacionárias quanto as fontes móveis. Ao mesmo tempo em que se lançam na atmosfera milhões de toneladas de poluentes a cada ano através da indústria, o homem procura soluções alternativas através de fontes de energia limpa. Adicionalmente, procura-se ao diminuir as emissões das fontes fixas exercer melhor controle e tratamento. Apresenta-se nesse trabalho, a possibilidade da implementação de ações que visem minimizar o impacto causado pelas caldeiras geradoras de energia, em especial as que operam com queimadores convencionais. Experimentou-se um procedimento capaz de ser utilizado de imediato pelas indústrias, antes mesmo de se implementar inovações tecnológicas, que demandam tempo e recursos. Desta forma, pode-se reduzir, de maneira imediata, o volume de poluentes lançados diariamente na atmosfera, em especial o monóxido de carbono, CO, os óxidos de nitrogênio, NOx, e o material particulado, MP. Objetivou-se atingir um nível de emissões capaz de minimizar o custo do dano, sem perder a eficiência da combustão. Apresenta-se ainda a base metodológica de um modelo, utilizando-se a lógica difusa, como forma de se obter um controle e confiabilidade na gestão das emissões.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Com cada vez mais intenso desenvolvimento urbano e industrial, atualmente um desafio fundamental é eliminar ou reduzir o impacto causado pelas emissões de poluentes para a atmosfera. No ano de 2012, o Rio de Janeiro sediou a Rio +20, a Conferência das Nações Unidas sobre Desenvolvimento Sustentável, onde representantes de todo o mundo participaram. Na época, entre outros assuntos foram discutidos a economia verde e o desenvolvimento sustentável. O O3 troposférico apresenta-se como uma variável extremamente importante devido ao seu forte impacto ambiental, e conhecer o comportamento dos parâmetros que afetam a qualidade do ar de uma região, é útil para prever cenários. A química das ciências atmosféricas e meteorologia são altamente não lineares e, assim, as previsões de parâmetros de qualidade do ar são difíceis de serem determinadas. A qualidade do ar depende de emissões, de meteorologia e topografia. Os dados observados foram o dióxido de nitrogênio (NO2), monóxido de nitrogênio (NO), óxidos de nitrogênio (NOx), monóxido de carbono (CO), ozônio (O3), velocidade escalar vento (VEV), radiação solar global (RSG), temperatura (TEM), umidade relativa (UR) e foram coletados através da estação móvel de monitoramento da Secretaria do Meio Ambiente (SMAC) do Rio de Janeiro em dois locais na área metropolitana, na Pontifícia Universidade Católica (PUC-Rio) e na Universidade do Estado do Rio de Janeiro (UERJ) no ano de 2011 e 2012. Este estudo teve três objetivos: (1) analisar o comportamento das variáveis, utilizando o método de análise de componentes principais (PCA) de análise exploratória, (2) propor previsões de níveis de O3 a partir de poluentes primários e de fatores meteorológicos, comparando a eficácia dos métodos não lineares, como as redes neurais artificiais (ANN) e regressão por máquina de vetor de suporte (SVM-R), a partir de poluentes primários e de fatores meteorológicos e, finalmente, (3) realizar método de classificação de dados usando a classificação por máquina de vetor suporte (SVM-C). A técnica PCA mostrou que, para conjunto de dados da PUC as variáveis NO, NOx e VEV obtiveram um impacto maior sobre a concentração de O3 e o conjunto de dados da UERJ teve a TEM e a RSG como as variáveis mais importantes. Os resultados das técnicas de regressão não linear ANN e SVM obtidos foram muito próximos e aceitáveis para o conjunto de dados da UERJ apresentando coeficiente de determinação (R2) para a validação, 0,9122 e 0,9152 e Raiz Quadrada do Erro Médio Quadrático (RMECV) 7,66 e 7,85, respectivamente. Quanto aos conjuntos de dados PUC e PUC+UERJ, ambas as técnicas, obtiveram resultados menos satisfatórios. Para estes conjuntos de dados, a SVM mostrou resultados ligeiramente superiores, e PCA, SVM e ANN demonstraram sua robustez apresentando-se como ferramentas úteis para a compreensão, classificação e previsão de cenários da qualidade do ar

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The embodied energy (EE) and gas emissions of four design alternatives for an embankment retaining wall system are analyzed for a hypothetical highway construction project. The airborne emissions considered are carbon dioxide (CO 2), methane (CH 4), nitrous oxide (N 2O), sulphur oxides (SO X), and nitrogen oxides (NO X). The process stages considered in this study are the initial materials production, transportation of construction machineries and materials, machinery operation during installation, and machinery depreciations. The objectives are (1) to determine whether there are statistically significant differences among the structural alternatives; (2) to understand the relative proportions of impacts for the process stages within each design; (3) to contextualize the impacts to other aspects in life by comparing the computed EE values to household energy consumption and car emission values; and (4) to examine the validity of the adopted EE as an environmental impact indicator through comparison with the amount of gas emissions. For the project considered in this study, the calculated results indicate that propped steel sheet pile wall and minipile wall systems have less embodied energy and gas emissions than cantilever steel tubular wall and secant concrete pile wall systems. The difference in CO 2 emission for the retaining wall of 100 m length between the most and least environmentally preferable wall design is equivalent to an average 2.0 L family car being driven for 6.2 million miles (or 62 cars with a mileage of 10,000 miles/year for 10 years). The impacts in construction are generally notable and careful consideration and optimization of designs will reduce such impacts. The use of recycled steel or steel pile as reinforcement bar is effective in reducing the environmental impact. The embodied energy value of a given design is correlated to the amount of gas emissions. © 2011 American Society of Civil Engineers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The nitrogen oxides (NO_x) are serious pollutants in earth's atmosphere in the sensethat they are one of the main sources to cause the acid rain. The removal of NO_x is oneof the key research topics in the protection of environmen.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The silver catalyzed, selective catalytic reduction (SCR) of nitrogen oxides (NOx) by CH4, is shown to be a structure-sensitive reaction. Pretreatment has a great affect on the catalytic performances. Upon thermal treatment in inert gas stream, thermal induced changes in silver morphology lead to the formation of reduced silver species of clusters and particles. Catalysis over this catalyst indicates an initially higher activity but lower selectivity for the CH4-SCR of NOx Reaction induced restructuring of silver results in the formation of ill-defined silver oxides. This, in turn, impacts the adsorption properties and diffusivity of oxygen over silver catalyst, results in the decrease in activity but increase in selectivity of Ag-H-ZSM-5 catalyst for the CH4-SCR of NO.. (c) 2004 Elsevier B.V. All rights reserved.