957 resultados para Nicotine C-oxidase


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An emerging and important site of action for nitric oxide (NO) within cells is the mitochondrial inner membrane, where NO binds to and inhibits members of the electron transport chain, complex III and cytochrome c oxidase. Although it is known that inhibition of cytochrome c oxidase by NO is competitive with O2, the mechanisms that underlie this phenomenon remain unclear, and the impact of both NO and O2 partitioning into biological membranes has not been considered. These properties are particularly interesting because physiological O2 tensions can vary widely, with NO having a greater inhibitory effect at low O2 tensions (<20 μM). In this study, we present evidence for a consumption of NO in mitochondrial membranes in the absence of substrate, in a nonsaturable process that is O2 dependent. This consumption modulates inhibition of cytochrome c oxidase by NO and is enhanced by the addition of exogenous membranes. From these data, it is evident that the partition of NO into mitochondrial membranes has a major impact on the ability of NO to control mitochondrial respiration. The implications of this conclusion are discussed in the context of mitochondrial lipid:protein ratios and the importance of NO as a regulator of respiration in pathophysiology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some intermediates in the reduction of O2 to water by cytochrome-c oxidase have been characterized by optical, Raman, and magnetic circular dichroism spectroscopy. The so-called "peroxy" (P) and "ferryl" (F) forms of the enzyme, which have been considered to be intermediates of the oxygen reaction, can be generated when the oxidized enzyme reacts with H2O2, or when the two-electron reduced ("CO mixed-valence") enzyme reacts with O2. The structures as well as the overall redox states of P and F have recently been controversial. We show here, using tris(2,2'-bipyridyl)ruthenium(II) as a photoinducible reductant, that one-electron reduction of P yields F, and that one-electron reduction of F yields the oxidized enzyme. This confirms that the overall redox states of P and F differ from the oxidized enzyme by two and one electron equivalents, respectively. The structures of the P and F states are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bovine heart cytochrome c oxidase is an electron-current driven proton pump. To investigate the mechanism by which this pump operates it is important to study individual electron- and proton-transfer reactions in the enzyme, and key reactions in which they are kinetically and thermodynamically coupled. In this work, we have simultaneously measured absorbance changes associated with electron-transfer reactions and conductance changes associated with protonation reactions following pulsed illumination of the photolabile complex of partly reduced bovine cytochrome c oxidase and carbon monoxide. Following CO dissociation, several kinetic phases in the absorbance changes were observed with time constants ranging from approximately 3 microseconds to several milliseconds, reflecting internal electron-transfer reactions within the enzyme. The data show that the rate of one of these electron-transfer reactions, from cytochrome a3 to a on a millisecond time scale, is controlled by a proton-transfer reaction. These results are discussed in terms of a model in which cytochrome a3 interacts electrostatically with a protonatable group, L, in the vicinity of the binuclear center, in equilibrium with the bulk through a proton-conducting pathway, which determines the rate of proton transfer (and indirectly also of electron transfer). The interaction energy of cytochrome a3 with L was determined independently from the pH dependence of the extent of the millisecond-electron transfer and the number of protons released, as determined from the conductance measurements. The magnitude of the interaction energy, 70 meV (1 eV = 1.602 x 10(-19) J), is consistent with a distance of 5-10 A between cytochrome a3 and L. Based on the recently determined high-resolution x-ray structures of bovine and a bacterial cytochrome c oxidase, possible candidates for L and a physiological role for L are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A protein analog of a purple copper center has been constructed from a recombinant blue copper protein (Pseudomonas aeruginosa azurin) by replacing the loop containing the three ligands to the blue copper center with the corresponding loop of the CuA center in cytochrome c oxidase (COX) from Paracoccus denitrificans. The electronic absorption in the UV and visible region (UV-vis) and electron paramagnetic resonance (EPR) spectra of this analog are remarkably similar to those of the native CuA center in COX from Paracoccus denitrificans. The above spectra can be obtained upon addition of a mixture of Cu2+ and Cu+. Addition of Cu2+ only results in a UV-vis spectrum consisting of absorptions from both a purple copper center and a blue copper center. This spectrum can be converted to the spectrum of a pure purple copper by a prolonged incubation in the air, or by addition of excess ascorbate. The azurin mutant reported here is an example of an engineered purple copper center with the A480/A530 ratio greater than 1 and with no detectable hyperfines, similar to those of the CuA sites in COX of bovine heart and of Paracoccus denitrificans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radiolabel from [3H]myristic acid was incorporated by Neurospora crassa into the core catalytic subunit 1 of cytochrome c oxidase (EC 1.9.3.1), as indicated by immunoprecipitation. This modification of the subunit, which was specific for myristic acid, represents an uncommon type of myristoylation through an amide linkage at an internal lysine, rather than an N-terminal glycine. The [3H]myristate, which was chemically recovered from the radiolabeled subunit peptide, modified an invariant Lys-324, based upon analyses of proteolysis products. This myristoylated lysine is found within one of the predicted transmembrane helices of subunit 1 and could contribute to the environment of the active site of the enzyme. The myristate was identified by mass spectrometry as a component of mature subunit 1 of a catalytically active, purified enzyme. To our knowledge, fatty acylation of a mitochondrially synthesized inner-membrane protein has not been reported previously.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electronic structure and spectrum of several models of the binuclear metal site in soluble CuA domains of cytochrome-c oxidase have been calculated by the use of an extended version of the complete neglect of differential overlap/spectroscopic method. The experimental spectra have two strong transitions of nearly equal intensity around 500 nm and a near-IR transition close to 800 nm. The model that best reproduces these features consists of a dimer of two blue (type 1) copper centers, in which each Cu atom replaces the missing imidazole on the other Cu atom. Thus, both Cu atoms have one cysteine sulfur atom and one imidazole nitrogen atom as ligands, and there are no bridging ligands but a direct Cu-Cu bond. According to the calculations, the two strong bands in the visible region originate from exciton coupling of the dipoles of the two copper monomers, and the near-IR band is a charge-transfer transition between the two Cu atoms. The known amino acid sequence has been used to construct a molecular model of the CuA site by the use of a template and energy minimization. In this model, the two ligand cysteine residues are in one turn of an alpha-helix, whereas one ligand histidine is in a loop following this helix and the other one is in a beta-strand.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effects of cigarette smoking and exposure to dietary cadmium (Cd) and lead (Pb) on urinary biomarkers of renal function and phenotypic variability of cytochrome P450 2A6 (CYP2A6) were investigated in a group of 96 healthy Thai men with mean age of 36.7 year (19-57 years). In non-smokers, Cd burden increased with age (r = 0.47, P < 0.001). In current smokers, Cd burden increased with both age (r = 0.45, P = 0.01) and number of cigarettes smoked per day (r = 0.32, P = 0.05). Cd-linked renal tubular dysfunction was seen in both smokers and non-smokers, but Pb-linked glomerular dysfunction was seen in smokers only, possibly due to more recent exposure to high levels of Cd and Pb, as reflected by 30-50% higher serum Cd and Pb levels in smokers than non-smokers (P < 0.05). Exposure to dietary Cd and Pb appeared to be associated with mild tubular dysfunction whereas dietary exposure plus cigarette smoking was associated with tubular plus glomerular dysfunction. Hepatic CYP2A6 activity in non-smokers showed a positive association with Cd burden (adjusted P = 0.38, P = 0.006), but it showed an inverse correlation with Pb (adjusted beta = -0.29, P = 0.003), suggesting opposing effects of Cd and Pb on hepatic CYP2A6 phenotype. In contrast, CYP2A6 activity in current smokers did not correlate with Cd or Pb, but it showed a positive correlation with serum ferritin levels (r = 0.45, P = 0.01). These finding suggest that Pb concentrations in the liver probably were too low to inhibit hepatic synthesis of heme and CYP2A6 and that the concurrent induction of hepatic CYP2A6 and ferritin was probably due to cigarette smoke constituents other than the Cd and Pb. (C) 2004 Elsevier Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examined the interrelationships between phenotype of hepatic cytochrome P450 2A6 (CYP2A6), nephropathy, and exposure to cadmium and lead in a group of 118 healthy Thai men and women who had never smoked. Their urinary Cd excretion ranged from 0.05 to 2.36 mug/g creatinine, whereas their urinary Pb excretion ranged from 0.1 to 12 mug/g creatinine. Average age and Cd burden of women and men did not differ. Women, however, on average showed a 46% higher urinary Pb excretion (p < 0.001) and lower zinc status, suggested by lower average serum Zn and urinary Zn excretion compared with those in men. Cd-linked nephropathy was detected in both men and women. However, Pb-linked nephropathy was seen only in women, possibly because of higher Pb burden coupled with lower protective factors, notably of Zn (P < 0.001), in women compared with men. In men, Pb burden showed a negative association with CYP2A6 activity (adjusted beta = -0.29, p = 0.003), whereas Cd burden showed a positive association with CYP2A6 activity (adjusted beta = 0.38, p = 0.001), suggesting opposing effects of Cd and Pb on hepatic CYP2A6 phenotype. The weaker correlation between Cd burden CYP2A6 activity in women despite similarity in Cd burden between men and women is consistent with opposing effects of Pb and Cd on hepatic CYP2A6 phenotypic expression. A positive correlation between Cd-linked nephropathy (urinary N-acetyl-beta-D-glucosaminidase excretion) and CYP2A6 activity in men (r = 0.39, p = 0.002) and women (r = 0.37, p = 0.001) suggests that Cd induction of hepatic CYP2A6 expression and Cd-linked nephropathy occurred simultaneously.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanism whereby cytochrome £ oxidase catalyses elec-. tron transfer from cytochrome £ to oxygen remains an unsolved problem. Polarographic and spectrophotometric activity measurements of purified, particulate and soluble forms of beef heart mitochondrial cytochrome c oxidase presented in this thesis confirm the following characteristics of the steady-state kinetics with respect to cytochrome £: (1) oxidation of ferrocytochrome c is first order under all conditions. -(2) The relationship between sustrate concentration and velocity is of the Michaelis-Menten type over a limited range of substrate. concentrations at high ionic strength. (3) ~he reaction rate is independent from oxygen concentration until very low levels of oxygen. (4) "Biphasic" kinetic plots of enzyme activity as a function of substrate concentration are found when the range of cytochrome c concentrations is extended; the biphasicity ~ is more apparent in low ionic strength buffer. These results imply two binding sites for cytochrome £ on the oxidase; one of high affinity and one of low affinity with Km values of 1.0 pM and 3.0 pM, respectively, under low ionic strength conditions. (5) Inhibition of the enzymic rate by azide is non-c~mpetitive with respect to cytochrome £ under all conditions indicating an internal electron transfer step, and not binding or dissociation of £ from the enzyme is rate limiting. The "tight" binding of cytochrome '£ to cytochrome c oxidase is confirmed in column chromatographic experiments. The complex has a cytochrome £:oxidase ratio of 1.0 and is dissociated in media of high ionic strength. Stopped-flow spectrophotometric studies of the reduction of equimolar mixtures and complexes of cytochrome c and the oxidase were initiated in an attempt to assess the functional relevance of such a complex. Two alternative routes -for reduction of the oxidase, under conditions where the predominant species is the £ - aa3 complex, are postulated; (i) electron transfer via tightly bound cytochrome £, (ii) electron transfer via a small population of free cytochrome c interacting at the "loose" binding site implied from kinetic studies. It is impossible to conclude, based on the results obtained, which path is responsible for the reduction of cytochrome a. The rate of reduction by various reductants of free cytochrome £ in high and low ionic strength and of cytochrome £ electrostatically bound to cytochrome oxidase was investigated. Ascorbate, a negatively charged reagent, reduces free cytochrome £ with a rate constant dependent on ionic strength, whereas neutral reagents TMPD and DAD were relatively unaffected by ionic strength in their reduction of cytochrome c. The zwitterion cysteine behaved similarly to uncharged reductants DAD and TI~PD in exhibiting only a marginal response to ionic strength. Ascorbate reduces bound cytochrome £ only slowly, but DAD and TMPD reduce bound cytochrome £ rapidly. Reduction of cytochrome £ by DAD and TMPD in the £ - aa3 complex was enhanced lO-fold over DAD reduction of free £ and 4-fold over TMPD reduction of free c. Thus, the importance of ionic strength on the reactivity of cytochrome £ was observed with the general conclusion being that on the cytochrome £ molecule areas for anion (ie. phosphate) binding, ascorbate reduction and complexation to the oxidase overlap. The increased reducibility for bound cytochrome £ by reductants DAD and TMPD supports a suggested conformational change of electrostatically bound c compare.d to free .£. In addition, analysis of electron distribution between cytochromes £ and a in the complex suggest that the midpotential of cytochrome ~ changes with the redox state of the oxidase. Such evidence supports models of the oxidase which suggest interactions within the enzyme (or c - enzyme complex) result in altered midpoint potentials of the redox centers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The ba3-type cytochrome c oxidase from Thermus thermophilus is a membrane-bound protein complex that couples electron transfer to O2 to proton translocation across the membrane. To elucidate the mechanism of the redox-driven proton pumping, we investigated the kinetics of electron and proton transfer in a structural variant of the ba3 oxidase where a putative "pump site" was modified by replacement of Asp372 by Ile. In this structural variant, proton pumping was uncoupled from internal electron transfer and O2 reduction. The results from our studies show that proton uptake to the pump site (time constant ∼65 μs in the wild-type cytochrome c oxidase) was impaired in the Asp372Ile variant. Furthermore, a reaction step that in the wild-type cytochrome c oxidase is linked to simultaneous proton uptake and release with a time constant of ∼1.2 ms was slowed to ∼8.4 ms, and in Asp372Ile was only associated with proton uptake to the catalytic site. These data identify reaction steps that are associated with protonation and deprotonation of the pump site, and point to the area around Asp372 as the location of this site in the ba3 cytochrome c oxidase.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A chromosomal locus required for copper resistance and competitive fitness was cloned from a strain of Pseudomonas fluorescens isolated from copper-contaminated agricultural soil. Sequence analysis of this locus revealed six open reading frames with homology to genes involved in cytochrome c biogenesis in other bacteria, helC, cycJ, cycK, tipB, cycL, and cycH, with the closest similarity being to the aeg-46.5(yej) region of the Escherichia coli chromosome. The proposed functions of these genes in other bacteria include the binding, transport, and coupling of heme to apocytochrome c in the periplasm of these Gram-negative bacteria. Putative heme-binding motifs were present in the predicted products of cycK and cycL, and TipB contained a putative disulfide oxidoreductase active site proposed to maintain the heme-binding site of the apocytochrome in a reduced state for ligation of heme. Tn3-gus mutagenesis showed that expression of the genes was constitutive but enhanced by copper, and confirmed that the genes function both in copper resistance and production of active cytochrome c. However, two mutants in cycH were copper-sensitive and oxidase-positive, suggesting that the functions of these genes, rather than cytochrome c oxidase itself, were required for resistance to copper.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have studied the kinetics of the oxygen reaction of the fully reduced quinol oxidase, cytochrome bo3, using flow-flash and stopped flow techniques. This enzyme belongs to the heme-copper oxidase family but lacks the CuA center of the cytochrome c oxidases. Depending on the isolation procedure, the kinetics are found to be either nearly monophasic and very different from those of cytochrome c oxidase or multiphasic and quite similar to cytochrome c oxidase. The multiphasic kinetics in cytochrome c oxidase can largely be attributed to the presence Of CuA as the donor of a fourth electron, which rereduces the originally oxidized low-spin heme and completes the reduction of O2 to water. Monophasic kinetics would thus be expected, a priori, for cytochrome bo3 since it lacks the CuA center, and in this case we show that the oxygen reaction is incomplete and ends with the ferryl intermediate. Multiphasic kinetics thus suggest the presence of an extra electron donor (analogous to CuA). We observe such kinetics exclusively with cytochrome bo3 that contains a single equivalent of bound ubiquinone-8, whereas we find no bound ubiquinone in an enzyme exhibiting monophasic kinetics. Reconstitution with ubiquinone-8 converts the reaction kinetics from monophasic to multiphasic. We conclude that a single bound ubiquinone molecule in cytochrome bo3 is capable of fast rereduction of heme b and that the reaction with O2 is quite similar in quinol and cytochrome c oxidases.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

One innovative thought in biomolecular electronics is the exploitation of electron transfer proteins. Using nature's self assembly techniques, proteins can build highly organized edifices with retained functional activity, and they can serve as platforms for biosensors. In this research work, Yeast Cytochrome C (YCC) is immobilized with a help of a linker molecule, 3-Mercaptopropyltrimethoxysilane (3-MPTS) on a hydroxylated surface of a silicon substrate. Atomic Force Microscopy (AFM) is used for characterization. AFM data shows immobilization of one YCC molecule in between eight grids that are formed by the linker molecules. 3-MPTS monolayers are organized in grids that are 1.2 nm apart. Immobilization of 3-MPTS was optimized using a concentration of 5 mM in a completely dehydrated state for 30 minutes. The functionally active grids of YCC can now be incorporated with Cytochrome C oxidase on a Platinum electrode surface for transfer of electrons in development of biosensors, such as nitrate sensor, that are small in size, cheaper, and easier to manufacture than the top-down approach of fabrication of molecular biodevices

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background Bactrocera dorsalis s.s. is a pestiferous tephritid fruit fly distributed from Pakistan to the Pacific, with the Thai/Malay peninsula its southern limit. Sister pest taxa, B. papayae and B. philippinensis, occur in the southeast Asian archipelago and the Philippines, respectively. The relationship among these species is unclear due to their high molecular and morphological similarity. This study analysed population structure of these three species within a southeast Asian biogeographical context to assess potential dispersal patterns and the validity of their current taxonomic status. Results Geometric morphometric results generated from 15 landmarks for wings of 169 flies revealed significant differences in wing shape between almost all sites following canonical variate analysis. For the combined data set there was a greater isolation-by-distance (IBD) effect under a ‘non-Euclidean’ scenario which used geographical distances within a biogeographical ‘Sundaland context’ (r2 = 0.772, P < 0.0001) as compared to a ‘Euclidean’ scenario for which direct geographic distances between sample sites was used (r2 = 0.217, P < 0.01). COI sequence data were obtained for 156 individuals and yielded 83 unique haplotypes with no correlation to current taxonomic designations via a minimum spanning network. BEAST analysis provided a root age and location of 540kya in northern Thailand, with migration of B. dorsalis s.l. into Malaysia 470kya and Sumatra 270kya. Two migration events into the Philippines are inferred. Sequence data revealed a weak but significant IBD effect under the ‘non-Euclidean’ scenario (r2 = 0.110, P < 0.05), with no historical migration evident between Taiwan and the Philippines. Results are consistent with those expected at the intra-specific level. Conclusions Bactrocera dorsalis s.s., B. papayae and B. philippinensis likely represent one species structured around the South China Sea, having migrated from northern Thailand into the southeast Asian archipelago and across into the Philippines. No migration is apparent between the Philippines and Taiwan. This information has implications for quarantine, trade and pest management.