330 resultados para Nicotine
Resumo:
Ulcerative colitis (UC) is characterized by impairment of the epithelial barrier and the formation of ulcer-type lesions, which result in local leaks and generalized alterations of mucosal tight junctions. Ultimately, this results in increased basal permeability. Although disruption of the epithelial barrier in the gut is a hallmark of inflammatory bowel disease and intestinal infections, it remains unclear whether barrier breakdown is an initiating event of UC or rather a consequence of an underlying inflammation, evidenced by increased production of proinflammatory cytokines. UC is less common in smokers, suggesting that the nicotine in cigarettes may ameliorate disease severity. The mechanism behind this therapeutic effect is still not fully understood, and indeed it remains unclear if nicotine is the true protective agent in cigarettes. Nicotine is metabolized in the body into a variety of metabolites and can also be degraded to form various breakdown products. It is possible these metabolites or degradation products may be the true protective or curative agents. A greater understanding of the pharmacodynamics and kinetics of nicotine in relation to the immune system and enhanced knowledge of out permeability defects in UC are required to establish the exact protective nature of nicotine and its metabolites in UC. This review suggests possible hypotheses for the protective mechanism of nicotine in UC, highlighting the relationship between gut permeability and inflammation, and indicates where in the pathogenesis of the disease nicotine may mediate its effect.
Resumo:
Ulcerative colitis is characterised by impairment of the epithelial barrier and tight junction alterations resulting in increased intestinal permeability. UC is less common in smokers with smoking reported to decrease paracellular permeability. The aim of this study was thus to determine the effect of nicotine, the major constituent in cigarettes and its metabolites on the integrity of tight junctions in Caco-2 cell monolayers. The integrity of Caco-2 tight junctions was analysed by measuring the transepithelial electrical resistance (TER) and by tracing the flux of the fluorescent marker fluorescein, after treatment with various concentrations of nicotine or nicotine metabolites over 48 h. TER was significantly higher compared to the control for all concentrations of nicotine 0.01-10 M at 48 h (p < 0.001), and for 0.01 mu M (p < 0.001) and 0.1 mu M and 10 M nicotine (p < 0.01) at 12 and 24 h. The fluorescein flux results supported those of the TER assay. TER readings for all nicotine metabolites tested were also higher at 24 and 48 h only (p <= 0.01). Western blot analysis demonstrated that nicotine up-regulated the expression of the tight junction proteins occludin and claudin-l (p < 0.01). Overall, it appears that nicotine and its metabolites, at concentrations corresponding to those reported in the blood of smokers, can significantly improve tight junction integrity, and thus, decrease epithelial gut permeability. We have shown that in vitro, nicotine appears more potent than its metabolites in decreasing epithelial gut permeability. We speculate that this enhanced gut barrier may be the result of increased expression of claudin-l and occludin proteins, which are associated with the formation of tight junctions. These findings may help explain the mechanism of action of nicotine treatment and indeed smoking in reducing epithelial gut permeability. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The rational for this review is to provide a coherent formulation of the cognitive neurochemistry of nicotine, with the aim of suggesting research and clinical applications. The first part is a comprehensive review of the empirical studies of the enhancing effects of nicotine on information processing, especially those on attentional and mnemonic processing. Then, these studies are put in the context of recent studies on the neurochemistry of nicotine and cholinergic drugs, in general. They suggest a positive effect of nicotine on processes acting on encoded material during the post acquisition phase, the process of consolidation. Thus, the involvement of nicotinic receptors in mnemonic processing is modulation of the excitability of neurons in the hippocampal formation to enable associative processing.
Resumo:
Rationale. Smokers modify their smoking behaviour when switching from their usual product to higher or lower tar and nicotine-yield cigarettes. Objective. The aims of the current study were to assess the influence of varying nicotine yields at constant tar yield on human puffing measures, nicotine deliveries under human smoking conditions and the sensory response to mainstream cigarette smoke. These assessments would allow an evaluation of the degree of compensation and the various possible causes of changes, if any. Methods. The participants were 13 regular smokers of commercial or hand-rolled cigarettes. They were tested with four cigarettes, which exhibited a wide range of nicotine to 'tar' ratios at a relatively constant 'tar' yield. Their smoking behaviour was monitored by placing the test cigarettes into an orifice-type holder/flowmeter attached to a custom-built smoker behaviour analyser. In addition, a comprehensive sensory evaluation of the products was carried out. Results. The differences in the nicotine to tar ratios of the samples did not significantly influence the puffing behaviour patterns, i.e. puff number and interval, total and average puff volume, integrated pressure and puff duration. Additionally the pre- to post-exhaled CO boosts were not significantly influenced by the experimental samples used in the study. However, the nicotine yields obtained by the smokers were significantly influenced by the machine-smoked nicotine yields or the nicotine to tar ratios of the samples. The machine-smoked nicotine yields were highly correlated with the nicotine yields obtained under human smoking conditions. For the sensory evaluation, there was only a significant difference between the samples in the intensity of the impact. Conclusion. These observations imply that these puffing variables are not controlled by the nicotine yield of the cigarette.
Resumo:
1. Nicotine has been implicated as a causative factor in the intrauterine growth retardation associated with smoking in pregnancy. A study was set up to ascertain the effect of nicotine on fetal growth and whether this could be related to the actions of this drug on maternal adipose tissue metabolism. 2. Sprague-Dawley rats were mated and assigned to control and nicotine groups, the latter receiving nicotine in the drinking-water throughout pregnancy. Animals were weighed at regular intervals and killed on day 20 of pregnancy. Rates of maternal adipose tissue lipolysis and lipogenesis were measured. Fetal and placental weights were recorded and analysis of fetal body water, fat, protein and DNA carried out. 3. Weight gains of mothers in the nicotine group were less in the 1st and 2nd weeks of pregnancy, but similar to controls in the 3rd week. Fetal body-weights, DNA, protein and percentage water contents were similar in both groups. Mean fetal body fat (g/kg) was significantly higher in the nicotine group (96.2 (SE 5.1)) compared with controls (72.0 (SE 2.9)). Rates of maternal lipolysis were also higher in the nicotine group. 4. The cause of these differences and their effects on maternal and fetal well-being is discussed.
Resumo:
Hypertension can result from neuronal network imbalance in areas of central nervous system that control blood pressure, such as the nucleus tractus solitarius (NTS). There are several neurotransmitters and neuromodulatory substances within the NTS, such as adenosine, which acts on purinoreceptors A(2a) (A(2a)R). The A(2a)R modulates neurotransmission in the NTS where its activation may induce decrease in blood pressure by different mechanisms. Nicotine is a molecule that crosses the hematoencephalic barrier and acts in several areas of central nervous system including the NTS, where it may interact with some neurotransmitter systems and contributes to the development of hypertension in subjects with genetic predisposition to this disease. In this study we first determined A(2a)R binding, protein, and mRNA expression in dorsomedial medulla oblongata of neonate normotensive (WKY) and spontaneously hypertensive rats (SHR). Subsequently, we analyzed the modulatory effects of nicotine on A(2a)R in cell culture in order to evaluate its possible involvement in the development of hypertension. Data showed a decreased A(2a)R binding and increased protein and mRNA expression in tissue sample and culture of dorsal brainstem from SHR compared with those from WKY rats at basal conditions. Moreover, nicotine modulated A(2a)R binding, protein, and mRNA expression in cells from both strains. Interestingly, nicotine decreased A(2a)R binding and increased protein levels, as well as, induced a differential modulation in A(2a)R mRNA expression. Results give us a clue about the mechanisms involved in the modulatory effects of nicotine on A(2a)R as well as hypothesize its possible contribution to the development of hypertension. In conclusion, we demonstrated that A(2a)R of SHR cells which differ from WKY and nicotine differentially modulates A(2a)R in dorsal brainstem cells of SHR and WKY.
Resumo:
In this study, the effects of nicotine on global gene expression of cultured cells from the brainstem of spontaneously hypertensive rat (SHR) and normotensive Wistar Kyoto (WKY) rats were evaluated using whole-genome oligoarrays. We found that nicotine may act differentially on the gene expression profiles of SHR and WKY. The influence of strain was present in 321 genes that were differentially expressed in SHR as compared with WKY brainstem cells independently of the nicotine treatment. A total of 146 genes had their expression altered in both strains after nicotine exposure. Interaction between nicotine treatment and the strain was observed to affect the expression of 229 genes that participate in cellular pathways related to neurotransmitter secretion, intracellular trafficking and cell communication, and are possibly involved in the phenotypic differentiation between SHR and WKY rats, including hypertension. Further characterization of their function in hypertension development is warranted. The Pharmacogenomics Journal (2010) 10, 134-160; doi:10.1038/tpj.2009.42; published online 15 September 2009
Resumo:
Given that (1) the renin-angiotensin system (RAS) is compartmentalized within the central nervous system in neurons and glia (2) the major source of brain angiotensinogen is the glial cells, (3) the importance of RAS in the central control of blood pressure, and (4) nicotine increases the probability of development of hypertension associated to genetic predisposition; the objective of the present study was to evaluate the effects of nicotine on the RAS in cultured glial cells from the brainstem and hypothalamus of Wistar Kyoto (WKY) and spontaneously hypertensive (SHR) rats. Ligand binding, real-time PCR and western blotting assays were used to compare the expression of angiotensinogen, angiotensin converting enzyme, angiotensin converting enzyme 2 and angiotensin II type1 receptors. We demonstrate, for the first time, that there are significant differences in the basal levels of RAS components between WKY and SHR rats in glia from 1-day-old rats. We also observed that nicotine is able to modulate the renin-angiotensin system in glial cells from the brainstem and hypothalamus and that the SHR responses were more pronounced than WKY ones. The present data suggest that nicotine effects on the RAS might collaborate to the development of neurogenic hypertension in SHR through modulation of glial cells.
Differential behavioral and neuroendocrine effects of repeated nicotine in adolescent and adult rats
Resumo:
Despite the high prevalence of tobacco abuse among adolescents, the neurobiology of nicotine addiction has been studied mainly in adult animals. Repeated administration of this drug to adult rats induces behavioral sensitization. Nicotine activates the HPA axis in adult rats as measured by drug-induced increases in ACTH and corticosterone. Both behavioral sensitization and corticosterone are implicated in drug addiction. We examined the expression of behavioral sensitization induced by nicotine as well as the changes in corticosterone levels after repeated injections of nicotine in adolescent and adult animals. Adolescent and adult rats received subcutaneous (s.c.) injections of saline or 0.4 mg/kg of nicotine once daily for 7 days. Three days after the last injection animals were challenged with saline or nicotine (0.4 mg/kg; s.c.). Nicotine-induced locomotion was recorded in an activity cage. Trunk blood samples were collected in a subset of adolescent and adult rats and plasma corticosterone levels were determined by radioimmunoassay. Adult, but not adolescent, rats expressed behavioral sensitization. Pretreatment with nicotine abolished corticosterone-activating effect of this drug only in adult animals, indicating the development of tolerance at this age. Our results provide evidence that adolescent rats exposed to repeated nicotine display behavioral and neuroendocrine adaptations distinct from that observed in adult animals. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)