998 resultados para Niche modelling
Determining conservation priority areas for Palearctic passerine migrant birds in sub-Saharan Africa
Resumo:
Migratory bird species breeding in the Palearctic and overwintering in sub-Saharan Africa face multiple conservation challenges. As a result, many of these species have declined in recent decades, some dramatically. We therefore used the best available database for the distribution of 68 passerine migrants in sub-Saharan Africa to determine priority regions for their conservation. After modeling each species’ distribution using BIOMOD software, we entered the resulting species distributions at a 1° × 1° grid resolution into MARXAN software. We then used several different selection procedures that varied the boundary length modifier, species penalty factor, and the inclusion of grid cells with high human footprint and with protected areas. While results differed between selection procedures, four main regions were regularly selected: (1) one centered on southern Mali; (2) one including Eritrea, central Sudan, and northern Ethiopia; (3) one encompassing southwestern Kenya and much of Tanzania and Uganda; and (4) one including much of Zimbabwe and southwestern Zambia. We recommend that these four regions become priority regions for research and conservation efforts for the bird species considered in this study.
Resumo:
The genus Mastigusa Menge, 1854 includes small entelegyne spiders represented by extant and fossil species presenting characteristic features in male and female genitalia. The genus has a palearctic distribution, being present in Europe, North Africa, and the Near East, and shows ecological plasticity, with free-living, cave- dwelling and myrmecophile populations. The taxonomic history of the genus has been problematic, both regarding its phylogenetic placement and the delimitation of the species it includes. Three extant species are currently recognized, but the characters used to discriminate them have been inconsistent, leading to confusion about their identification and distribution. In the present thesis we addressed the taxonomic issues regarding Mastigusa by combining molecular and morphological data in an integrative taxonomy approach. For the first time, we included the genus in a molecular phylogenetic matrix solving a long going debate regarding its familiar placement, obtaining a well-supported placement in the family Cybaeidae. We used multi-locus molecular phylogenetic and DNA barcoding techniques as a starting point for identifying divergent lineages within the genus and revise the taxonomic status of the three known Mastigusa species, identifying a new species from the Iberian Peninsula, Algeria and the United Kingdom: M. raimondi sp. n. This taxonomic revision allowed a phylogeographic and ecological study of Mastigusa across its distribution range, carried out using phylogenetics and ecological niche modelling techniques, aiming at a comparison of the lifestyles and ecological requirements of the different species on a geographic scale. The Italian Alps were finally used as a testing ground for investigating the ecology and host preference of myrmecophile Mastigusa arietina populations living in association with ant species belonging to the Formica rufa species group. Spiders were found in association with five different Formica species, demonstrating little specificity and the tendency of associating with the locally present host species.
Resumo:
We present some additions to a fuzzy variable radius niche technique called Dynamic Niche Clustering (DNC) (Gan and Warwick, 1999; 2000; 2001) that enable the identification and creation of niches of arbitrary shape through a mechanism called Niche Linkage. We show that by using this mechanism it is possible to attain better feature extraction from the underlying population.
Resumo:
Report for the scientific sojourn at the Simon Fraser University, Canada, from July to September 2007. General context: landscape change during the last years is having significant impacts on biodiversity in many Mediterranean areas. Land abandonment, urbanisation and specially fire are profoundly transforming large areas in the Western Mediterranean basin and we know little on how these changes influence species distribution and in particular how these species will respond to further change in a context of global change including climate. General objectives: integrate landscape and population dynamics models in a platform allowing capturing species distribution responses to landscape changes and assessing impact on species distribution of different scenarios of further change. Specific objective 1: develop a landscape dynamic model capturing fire and forest succession dynamics in Catalonia and linked to a stochastic landscape occupancy (SLOM) (or spatially explicit population, SEPM) model for the Ortolan bunting, a species strongly linked to fire related habitat in the region. Predictions from the occupancy or spatially explicit population Ortolan bunting model (SEPM) should be evaluated using data from the DINDIS database. This database tracks bird colonisation of recently burnt big areas (&50 ha). Through a number of different SEPM scenarios with different values for a number of parameter, we should be able to assess different hypothesis in factors driving bird colonisation in new burnt patches. These factors to be mainly, landscape context (i.e. difficulty to reach the patch, and potential presence of coloniser sources), dispersal constraints, type of regenerating vegetation after fire, and species characteristics (niche breadth, etc).
Resumo:
Aim Niche conservatism, or the extent to which niches are conserved across space and time, is of special concern for the study of non-native species as it underlies predictions of invasion risk. Based on the occurrence of 28 non-native birds in Europe, we assess to what extent Grinnellian realized niches are conserved during invasion, formulate hypotheses to explain the variation in observed niche changes and test how well species distribution models can predict non-native bird occurrence in Europe. Location Europe. Methods To quantify niche changes, a recent method that applies kernel smoothers to densities of species occurrence in a gridded environmental space was used. This corrects for differences in the availability of environments between study areas and allows discrimination between 'niche expansion' into environments new to the species and 'niche unfilling', whereby the species only partially fills its niche in the invaded range. Predictions of non-native bird distribution in Europe were generated using several distribution modelling techniques. Results Niche overlap between native and non-native bird populations is low, but niche changes are smaller for species having a higher propagule pressure and that were introduced longer ago. Non-native birds in Europe occupy a subset of the environments they inhabit in their native ranges. Niche expansion into novel environments is rare for most species, allowing species distribution models to accurately predict invasion risk. Main conclusions Because of the recent nature of most bird introductions, species occupy only part of the suitable environments available in the invaded range. This signals that apart from purely ecological factors, patterns of niche conservatism may also be contingent on population-specific historical factors. These results also suggest that many claims of niche differences may be due to a partial filling of the native niche in the invaded range and thus do not represent true niche changes.
Resumo:
Aim, Location Although the alpine mouse Apodemus alpicola has been given species status since 1989, no distribution map has ever been constructed for this endemic alpine rodent in Switzerland. Based on redetermined museum material and using the Ecological-Niche Factor Analysis (ENFA), habitat-suitability maps were computed for A. alpicola, and also for the co-occurring A. flavicollis and A. sylvaticus. Methods In the particular case of habitat suitability models, classical approaches (GLMs, GAMs, discriminant analysis, etc.) generally require presence and absence data. The presence records provided by museums can clearly give useful information about species distribution and ecology and have already been used for knowledge-based mapping. In this paper, we apply the ENFA which requires only presence data, to build a habitat-suitability map of three species of Apodemus on the basis of museum skull collections. Results Interspecific niche comparisons showed that A. alpicola is very specialized concerning habitat selection, meaning that its habitat differs unequivocally from the average conditions in Switzerland, while both A. flavicollis and A. sylvaticus could be considered as 'generalists' in the study area. Main conclusions Although an adequate sampling design is the best way to collect ecological data for predictive modelling, this is a time and money consuming process and there are cases where time is simply not available, as for instance with endangered species conservation. On the other hand, museums, herbariums and other similar institutions are treasuring huge presence data sets. By applying the ENFA to such data it is possible to rapidly construct a habitat suitability model. The ENFA method not only provides two key measurements regarding the niche of a species (i.e. marginality and specialization), but also has ecological meaning, and allows the scientist to compare directly the niches of different species.
Resumo:
Rare species have restricted geographic ranges, habitat specialization, and/or small population sizes. Datasets on rare species distribution usually have few observations, limited spatial accuracy and lack of valid absences; conversely they provide comprehensive views of species distributions allowing to realistically capture most of their realized environmental niche. Rare species are the most in need of predictive distribution modelling but also the most difficult to model. We refer to this contrast as the "rare species modelling paradox" and propose as a solution developing modelling approaches that deal with a sufficiently large set of predictors, ensuring that statistical models aren't overfitted. Our novel approach fulfils this condition by fitting a large number of bivariate models and averaging them with a weighted ensemble approach. We further propose that this ensemble forecasting is conducted within a hierarchic multi-scale framework. We present two ensemble models for a test species, one at regional and one at local scale, each based on the combination of 630 models. In both cases, we obtained excellent spatial projections, unusual when modelling rare species. Model results highlight, from a statistically sound approach, the effects of multiple drivers in a same modelling framework and at two distinct scales. From this added information, regional models can support accurate forecasts of range dynamics under climate change scenarios, whereas local models allow the assessment of isolated or synergistic impacts of changes in multiple predictors. This novel framework provides a baseline for adaptive conservation, management and monitoring of rare species at distinct spatial and temporal scales.
Resumo:
AimTo identify the bioclimatic niche of the endangered Andean cat (Leopardus jacobita), one of the rarest and least known felids in the world, by developing a species distribution model.LocationSouth America, High Andes and Patagonian steppe. Peru, Bolivia, Chile, Argentina.MethodsWe used 108 Andean cat records to build the models, and 27 to test them, applying the Maxent algorithm to sets of uncorrelated bioclimatic variables from global databases, including elevation. We based our biogeographical interpretations on the examination of the predicted geographic range, the modelled response curves and latitudinal variations in climatic variables associated with the locality data.ResultsSimple bioclimatic models for Andean cats were highly predictive with only 3-4 explanatory variables. The climatic niche of the species was defined by extreme diurnal variations in temperature, cold minimum and moderate maximum temperatures, and aridity, characteristic not only of the Andean highlands but also of the Patagonian steppe. Argentina had the highest representation of suitable climates, and Chile the lowest. The most favourable conditions were centrally located and spanned across international boundaries. Discontinuities in suitable climatic conditions coincided with three biogeographical barriers associated with climatic or topographic transitions.Main conclusionsSimple bioclimatic models can produce useful predictions of suitable climatic conditions for rare species, including major biogeographical constraints. In our study case, these constraints are also known to affect the distribution of other Andean species and the genetic structure of Andean cat populations. We recommend surveys of areas with suitable climates and no Andean cat records, including the corridor connecting two core populations. The inclusion of landscape variables at finer scales, crucially the distribution of Andean cat prey, would contribute to refine our predictions for conservation applications.
Resumo:
Understanding factors that shape ranges of species is central in evolutionary biology. Species distribution models have become important tools to test biogeographical, ecological and evolutionary hypotheses. Moreover, from an ecological and evolutionary perspective, these models help to elucidate the spatial strategies of species at a regional scale. We modelled species distributions of two phylogenetically, geographically and ecologically close Tupinambis species (Teiidae) that occupy the southernmost area of the genus distribution in South America. We hypothesized that similarities between these species might have induced spatial strategies at the species level, such as niche differentiation and divergence of distribution patterns at a regional scale. Using logistic regression and MaxEnt we obtained species distribution models that revealed interspecific differences in habitat requirements, such as environmental temperature, precipitation and altitude. Moreover, the models obtained suggest that although the ecological niches of Tupinambis merianae and T. rufescens are different, these species might co-occur in a large contact zone. We propose that niche plasticity could be the mechanism enabling their co-occurrence. Therefore, the approach used here allowed us to understand the spatial strategies of two Tupinambis lizards at a regional scale.
Resumo:
Species distribution modelling is central to both fundamental and applied research in biogeography. Despite widespread use of models, there are still important conceptual ambiguities as well as biotic and algorithmic uncertainties that need to be investigated in order to increase confidence in model results. We identify and discuss five areas of enquiry that are of high importance for species distribution modelling: (1) clarification of the niche concept; (2) improved designs for sampling data for building models; (3) improved parameterization; (4) improved model selection and predictor contribution; and (5) improved model evaluation. The challenges discussed in this essay do not preclude the need for developments of other areas of research in this field. However, they are critical for allowing the science of species distribution modelling to move forward.
Resumo:
Aim Conservation strategies are in need of predictions that capture spatial community composition and structure. Currently, the methods used to generate these predictions generally focus on deterministic processes and omit important stochastic processes and other unexplained variation in model outputs. Here we test a novel approach of community models that accounts for this variation and determine how well it reproduces observed properties of alpine butterfly communities. Location The western Swiss Alps. Methods We propose a new approach to process probabilistic predictions derived from stacked species distribution models (S-SDMs) in order to predict and assess the uncertainty in the predictions of community properties. We test the utility of our novel approach against a traditional threshold-based approach. We used mountain butterfly communities spanning a large elevation gradient as a case study and evaluated the ability of our approach to model species richness and phylogenetic diversity of communities. Results S-SDMs reproduced the observed decrease in phylogenetic diversity and species richness with elevation, syndromes of environmental filtering. The prediction accuracy of community properties vary along environmental gradient: variability in predictions of species richness was higher at low elevation, while it was lower for phylogenetic diversity. Our approach allowed mapping the variability in species richness and phylogenetic diversity projections. Main conclusion Using our probabilistic approach to process species distribution models outputs to reconstruct communities furnishes an improved picture of the range of possible assemblage realisations under similar environmental conditions given stochastic processes and help inform manager of the uncertainty in the modelling results
Resumo:
Aim To assess the geographical transferability of niche-based species distribution models fitted with two modelling techniques. Location Two distinct geographical study areas in Switzerland and Austria, in the subalpine and alpine belts. Methods Generalized linear and generalized additive models (GLM and GAM) with a binomial probability distribution and a logit link were fitted for 54 plant species, based on topoclimatic predictor variables. These models were then evaluated quantitatively and used for spatially explicit predictions within (internal evaluation and prediction) and between (external evaluation and prediction) the two regions. Comparisons of evaluations and spatial predictions between regions and models were conducted in order to test if species and methods meet the criteria of full transferability. By full transferability, we mean that: (1) the internal evaluation of models fitted in region A and B must be similar; (2) a model fitted in region A must at least retain a comparable external evaluation when projected into region B, and vice-versa; and (3) internal and external spatial predictions have to match within both regions. Results The measures of model fit are, on average, 24% higher for GAMs than for GLMs in both regions. However, the differences between internal and external evaluations (AUC coefficient) are also higher for GAMs than for GLMs (a difference of 30% for models fitted in Switzerland and 54% for models fitted in Austria). Transferability, as measured with the AUC evaluation, fails for 68% of the species in Switzerland and 55% in Austria for GLMs (respectively for 67% and 53% of the species for GAMs). For both GAMs and GLMs, the agreement between internal and external predictions is rather weak on average (Kulczynski's coefficient in the range 0.3-0.4), but varies widely among individual species. The dominant pattern is an asymmetrical transferability between the two study regions (a mean decrease of 20% for the AUC coefficient when the models are transferred from Switzerland and 13% when they are transferred from Austria). Main conclusions The large inter-specific variability observed among the 54 study species underlines the need to consider more than a few species to test properly the transferability of species distribution models. The pronounced asymmetry in transferability between the two study regions may be due to peculiarities of these regions, such as differences in the ranges of environmental predictors or the varied impact of land-use history, or to species-specific reasons like differential phenotypic plasticity, existence of ecotypes or varied dependence on biotic interactions that are not properly incorporated into niche-based models. The lower variation between internal and external evaluation of GLMs compared to GAMs further suggests that overfitting may reduce transferability. Overall, a limited geographical transferability calls for caution when projecting niche-based models for assessing the fate of species in future environments.
Resumo:
1. The ecological niche is a fundamental biological concept. Modelling species' niches is central to numerous ecological applications, including predicting species invasions, identifying reservoirs for disease, nature reserve design and forecasting the effects of anthropogenic and natural climate change on species' ranges. 2. A computational analogue of Hutchinson's ecological niche concept (the multidimensional hyperspace of species' environmental requirements) is the support of the distribution of environments in which the species persist. Recently developed machine-learning algorithms can estimate the support of such high-dimensional distributions. We show how support vector machines can be used to map ecological niches using only observations of species presence to train distribution models for 106 species of woody plants and trees in a montane environment using up to nine environmental covariates. 3. We compared the accuracy of three methods that differ in their approaches to reducing model complexity. We tested models with independent observations of both species presence and species absence. We found that the simplest procedure, which uses all available variables and no pre-processing to reduce correlation, was best overall. Ecological niche models based on support vector machines are theoretically superior to models that rely on simulating pseudo-absence data and are comparable in empirical tests. 4. Synthesis and applications. Accurate species distribution models are crucial for effective environmental planning, management and conservation, and for unravelling the role of the environment in human health and welfare. Models based on distribution estimation rather than classification overcome theoretical and practical obstacles that pervade species distribution modelling. In particular, ecological niche models based on machine-learning algorithms for estimating the support of a statistical distribution provide a promising new approach to identifying species' potential distributions and to project changes in these distributions as a result of climate change, land use and landscape alteration.
Resumo:
Risk maps summarizing landscape suitability of novel areas for invading species can be valuable tools for preventing species' invasions or controlling their spread, but methods employed for development of such maps remain variable and unstandardized. We discuss several considerations in development of such models, including types of distributional information that should be used, the nature of explanatory variables that should be incorporated, and caveats regarding model testing and evaluation. We highlight that, in the case of invasive species, such distributional predictions should aim to derive the best hypothesis of the potential distribution of the species by using (1) all distributional information available, including information from both the native range and other invaded regions; (2) predictors linked as directly as is feasible to the physiological requirements of the species; and (3) modelling procedures that carefully avoid overfitting to the training data. Finally, model testing and evaluation should focus on well-predicted presences, and less on efficient prediction of absences; a k-fold regional cross-validation test is discussed.
Resumo:
La biologie de la conservation est communément associée à la protection de petites populations menacées d?extinction. Pourtant, il peut également être nécessaire de soumettre à gestion des populations surabondantes ou susceptibles d?une trop grande expansion, dans le but de prévenir les effets néfastes de la surpopulation. Du fait des différences tant quantitatives que qualitatives entre protection des petites populations et contrôle des grandes, il est nécessaire de disposer de modèles et de méthodes distinctes. L?objectif de ce travail a été de développer des modèles prédictifs de la dynamique des grandes populations, ainsi que des logiciels permettant de calculer les paramètres de ces modèles et de tester des scénarios de gestion. Le cas du Bouquetin des Alpes (Capra ibex ibex) - en forte expansion en Suisse depuis sa réintroduction au début du XXème siècle - servit d?exemple. Cette tâche fut accomplie en trois étapes : En premier lieu, un modèle de dynamique locale, spécifique au Bouquetin, fut développé : le modèle sous-jacent - structuré en classes d?âge et de sexe - est basé sur une matrice de Leslie à laquelle ont été ajoutées la densité-dépendance, la stochasticité environnementale et la chasse de régulation. Ce modèle fut implémenté dans un logiciel d?aide à la gestion - nommé SIM-Ibex - permettant la maintenance de données de recensements, l?estimation automatisée des paramètres, ainsi que l?ajustement et la simulation de stratégies de régulation. Mais la dynamique d?une population est influencée non seulement par des facteurs démographiques, mais aussi par la dispersion et la colonisation de nouveaux espaces. Il est donc nécessaire de pouvoir modéliser tant la qualité de l?habitat que les obstacles à la dispersion. Une collection de logiciels - nommée Biomapper - fut donc développée. Son module central est basé sur l?Analyse Factorielle de la Niche Ecologique (ENFA) dont le principe est de calculer des facteurs de marginalité et de spécialisation de la niche écologique à partir de prédicteurs environnementaux et de données d?observation de l?espèce. Tous les modules de Biomapper sont liés aux Systèmes d?Information Géographiques (SIG) ; ils couvrent toutes les opérations d?importation des données, préparation des prédicteurs, ENFA et calcul de la carte de qualité d?habitat, validation et traitement des résultats ; un module permet également de cartographier les barrières et les corridors de dispersion. Le domaine d?application de l?ENFA fut exploré par le biais d?une distribution d?espèce virtuelle. La comparaison à une méthode couramment utilisée pour construire des cartes de qualité d?habitat, le Modèle Linéaire Généralisé (GLM), montra qu?elle était particulièrement adaptée pour les espèces cryptiques ou en cours d?expansion. Les informations sur la démographie et le paysage furent finalement fusionnées en un modèle global. Une approche basée sur un automate cellulaire fut choisie, tant pour satisfaire aux contraintes du réalisme de la modélisation du paysage qu?à celles imposées par les grandes populations : la zone d?étude est modélisée par un pavage de cellules hexagonales, chacune caractérisée par des propriétés - une capacité de soutien et six taux d?imperméabilité quantifiant les échanges entre cellules adjacentes - et une variable, la densité de la population. Cette dernière varie en fonction de la reproduction et de la survie locale, ainsi que de la dispersion, sous l?influence de la densité-dépendance et de la stochasticité. Un logiciel - nommé HexaSpace - fut développé pour accomplir deux fonctions : 1° Calibrer l?automate sur la base de modèles de dynamique (par ex. calculés par SIM-Ibex) et d?une carte de qualité d?habitat (par ex. calculée par Biomapper). 2° Faire tourner des simulations. Il permet d?étudier l?expansion d?une espèce envahisseuse dans un paysage complexe composé de zones de qualité diverses et comportant des obstacles à la dispersion. Ce modèle fut appliqué à l?histoire de la réintroduction du Bouquetin dans les Alpes bernoises (Suisse). SIM-Ibex est actuellement utilisé par les gestionnaires de la faune et par les inspecteurs du gouvernement pour préparer et contrôler les plans de tir. Biomapper a été appliqué à plusieurs espèces (tant végétales qu?animales) à travers le Monde. De même, même si HexaSpace fut initialement conçu pour des espèces animales terrestres, il pourrait aisément être étndu à la propagation de plantes ou à la dispersion d?animaux volants. Ces logiciels étant conçus pour, à partir de données brutes, construire un modèle réaliste complexe, et du fait qu?ils sont dotés d?une interface d?utilisation intuitive, ils sont susceptibles de nombreuses applications en biologie de la conservation. En outre, ces approches peuvent également s?appliquer à des questions théoriques dans les domaines de l?écologie des populations et du paysage.<br/><br/>Conservation biology is commonly associated to small and endangered population protection. Nevertheless, large or potentially large populations may also need human management to prevent negative effects of overpopulation. As there are both qualitative and quantitative differences between small population protection and large population controlling, distinct methods and models are needed. The aim of this work was to develop theoretical models to predict large population dynamics, as well as computer tools to assess the parameters of these models and to test management scenarios. The alpine Ibex (Capra ibex ibex) - which experienced a spectacular increase since its reintroduction in Switzerland at the beginning of the 20th century - was used as paradigm species. This task was achieved in three steps: A local population dynamics model was first developed specifically for Ibex: the underlying age- and sex-structured model is based on a Leslie matrix approach with addition of density-dependence, environmental stochasticity and culling. This model was implemented into a management-support software - named SIM-Ibex - allowing census data maintenance, parameter automated assessment and culling strategies tuning and simulating. However population dynamics is driven not only by demographic factors, but also by dispersal and colonisation of new areas. Habitat suitability and obstacles modelling had therefore to be addressed. Thus, a software package - named Biomapper - was developed. Its central module is based on the Ecological Niche Factor Analysis (ENFA) whose principle is to compute niche marginality and specialisation factors from a set of environmental predictors and species presence data. All Biomapper modules are linked to Geographic Information Systems (GIS); they cover all operations of data importation, predictor preparation, ENFA and habitat suitability map computation, results validation and further processing; a module also allows mapping of dispersal barriers and corridors. ENFA application domain was then explored by means of a simulated species distribution. It was compared to a common habitat suitability assessing method, the Generalised Linear Model (GLM), and was proven better suited for spreading or cryptic species. Demography and landscape informations were finally merged into a global model. To cope with landscape realism and technical constraints of large population modelling, a cellular automaton approach was chosen: the study area is modelled by a lattice of hexagonal cells, each one characterised by a few fixed properties - a carrying capacity and six impermeability rates quantifying exchanges between adjacent cells - and one variable, population density. The later varies according to local reproduction/survival and dispersal dynamics, modified by density-dependence and stochasticity. A software - named HexaSpace - was developed, which achieves two functions: 1° Calibrating the automaton on the base of local population dynamics models (e.g., computed by SIM-Ibex) and a habitat suitability map (e.g. computed by Biomapper). 2° Running simulations. It allows studying the spreading of an invading species across a complex landscape made of variously suitable areas and dispersal barriers. This model was applied to the history of Ibex reintroduction in Bernese Alps (Switzerland). SIM-Ibex is now used by governmental wildlife managers to prepare and verify culling plans. Biomapper has been applied to several species (both plants and animals) all around the World. In the same way, whilst HexaSpace was originally designed for terrestrial animal species, it could be easily extended to model plant propagation or flying animals dispersal. As these softwares were designed to proceed from low-level data to build a complex realistic model and as they benefit from an intuitive user-interface, they may have many conservation applications. Moreover, theoretical questions in the fields of population and landscape ecology might also be addressed by these approaches.